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The Constitution of India

Preamble

WE, THE PEOPLE OF INDIA, having
solemnly resolved to constitute India into a
SOVEREIGN SOCIALIST SECULAR
DEMOCRATIC REPUBLIC and to secure to
all its citizens:

JUSTICE, social, economic and political;

LIBERTY of thought, expression, belief, faith
and worship;

EQUALITY of status and of opportunity;
and to promote among them all

FRATERNITY assuring the dignity of
the individual and the unity and integrity of the
Nation;

IN OUR CONSTITUENT ASSEMBLY this
twenty-sixth day of November, 1949, do HEREBY
ADOPT, ENACT AND GIVE TO OURSELVES
THIS CONSTITUTION.



NATIONAL ANTHEM

Jana-gana-mana-adhinayaka jaya hé
Bharata-bhagya-vidhata,

Panjaba-Sindhu-Gujarata-Maratha
Dravida-Utkala-Banga

Vindhya-Himachala-Yamuna-Ganga
uchchala-jaladhi-taranga

Tava subha namé jage, tava subha asisa mage,
gahé tava jaya-gatha,

Jana-gana-mangala-dayaka jaya hé
Bharata-bhagya-vidhata,

Jaya hé, Jaya hé, Jaya hé,
Jaya jaya jaya, jaya hé.

PLEDGE

India is my country. All Indians
are my brothers and sisters.

Ilove my country, and I am proud
of its rich and varied heritage. I shall
always strive to be worthy of it.

I shall give my parents, teachers
and all elders respect, and treat
everyone with courtesy.

To my country and my people,
I pledge my devotion. In their
well-being and prosperity alone lies

my happiness.
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( Preface )

Dear Students,

With great pleasure we place this detailed text book on basic physics in the hands of
the young generation. This is not only a textbook of physics for XII" standard, but contains
material that will be useful for the reader for self study.

This textbook aims to give the student a broad perspective to look into the physics
aspect in various phenomena they experience. The National Curriculum Framework (NCR)
was formulated in the year 2005, followed by the State Curriculum Framework (SCF) in
2010. Based on the given two frameworks, reconstruction of the curriculum and preparation
of a revised syllabus has been undertaken which will be introduced from the academic year
2020-21. The textbook incorporating the revised syllabus has been prepared and designed
by the Maharashtra State Bureau of Textbook Production and Curriculum Research,
(Balbharati), Pune.

The objective of bringing out this book is to prepare students to observe and analyse
various physical phenomena is the world around them and prepare a solid foundation for
those who aspire for admission to professional courses through competitive examinations.
Most of the chapters in this book assume background knowledge of the subject covered by
the text book for XI" Standard, and care has been taken of mentioning this in the appropriate
sections of the book. The book is not in the form of handy notes but embodies a good
historical background and in depth discussion as well. A number of solved examples in
every chapter and exercises at the end of each one of them are included with a view that
students will acquire proficiency and also will get enlightened after solving the exercises.
Physics is a highly conceptual subject. Problem solving will enable students understand the
underlying concepts. For students who want more, boxes entitled ‘Do you know?” have been
included at a number of places.

If you read the book carefully and solve the exercises in each chapter, you will
be well prepared to face the challenges of this competitive world and pave the way for a
successful career ahead.

The efforts taken to prepare the textbook will prove to be worthwhile if you read the
textbook and understand the subject. We hope it will be a wonderful learning experience for

you and an illuminating text material for teachers too.
]
r
Wi
-

(Vivek Gosavi)
Pune Director
Date : 21 February, 2020 Maharashtra State Bureau of Texbook
Bhartiya Saur : 2 Phalguna, 1941 Production and Curriculum Research, Pune
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- For Teachers -

Dear Teachers,

We are happy to introduce the revised
textbook of Physics for XII" standard. This
book is a sincere attempt to follow the
maxims of teaching as well as develop a
‘constructivist’ approach to enhance the
quality of learning. The demand for more
activity based, experiential and innovative
learning opportunities is the need of the
hour. The present curriculum has been
restructured so as to bridge the credibility
gap that exists between what is taught and
what students learn from direct experience
in the outside world. Guidelines provided
below will help to enrich the teaching-
learning process and achieve the desired
learning outcomes.

To begin with, get familiar with the
textbook yourself, and encourage the
students to read each chapter carefully.
The present book has been prepared for
constructivist and activity-based teaching,
including problem solving exercises.

Use teaching aids as required for proper
understanding of the subject.

Do not finish the chapter in short. However,
in the view of insufficient lectures, standard
derivations may be left to the students for
self study. Problem sloving must be given
due importance.

Follow the order of the chapters strictly as
listed in the contents because the units are

introduced in a graded manner to facilitate
knowledge building.

'Error in measurements' is an important
topic in physics. Please ask the students to
use this in estimating errors in their
measurements. This must become an
integral part of laboratory practices.
Magjor concepts of physics have a scientific
base. Encourage group work, learning
through each other’s help, etc. Facilitate
peer learning as much as possible by
reorganizing the class structure frequently.
Do not use the boxes titled ‘Do you know?’
or ‘Use your brain power’ for evaluation.
However, teachers must ensure that students
read this extra information and think about
the questions posed.

v" For evaluation, equal weightage should be

assigned to all the topics. Use different
combinations of questions. Stereotype
questions should be avoided.

Use Q.R. Code given in the textbook. Keep
checking the Q.R. Code for updated
information. Certain important links, websites
have been given for references. Also a list
of reference books is given. Teachers as well
as the students can use these references for
extra reading and in-depth understanding of
the subject.

Best wishes for a wonderful teaching
experience!

References:

1. Fundamentals of Physics - Halliday, Resnick, Walker; John Wiley (Sixth ed.).

2. Sears and Zeemansky's University Physics - Young and Freedman, Pearson Education (12 ed.)
3. Physics for Scientists and Engineers - Lawrence S. Lerner; Jones and Bartlett Publishers, UK.
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%l:l(tl// Competency Statements
Lesson After studying the content in Textbook students would be able to....

Unit I
Ratational Motion and Mechanical
Properties of fluids

Distinguish between centrifugal and centripetal forces.

Visualize the concepts of moment of inertia of an object.

Relate moment of inertia of a body with its angular momentum.
Differentiate between translational and rotational motions of rolling objects.
Relate the pressure of a fluid to the depth below its surface.

Explain the measurement of atmospheric pressure by using a barometer.
Use Pascal's law to explain the working of a hydraulic lift and hydraulic brakes.
Relate the surface energy of a fluid with its surface tension.

Distinguish between fluids which show capillary rise and fall.

Identify processes in daily life where surface tension plays a major role.
Explain the role of viscosity in everyday life.

Differentiate between streamline flow and turbulent flow.

Unit IT
Kinetic theory and
Thermodynamics

Relate various gas laws to form ideal gas equation.

Distinguish between ideal gas and a real gas.

Visualise mean free path as a function of various parameters..

Obtain degrees of freedom of a diatomic molecule.

Apply law of equipartition of energy to monatomic and diatomic molecules.
Compare emission of thermal radiation from a body with black body radiation.
Apply Stefan’s law of radiation to hot bodies .

Identify thermodynamic process in every day life.

Relate mechanical work and thermodynamic work.

Differentiate between different types of thermodynamic processes.

Explain the working of heat engine, refrigerator and air conditioner.

Unit III
Oscillations and waves

Identify periodic motion and simple harmonic motion.

Obtain the laws of motion for simple pendulum.

Visualize damped oscillations.

Apply wave theory to understand the phenomena of reflection, refraction, interference and
diffraction.

Visualize polarized and unpolarized light.

Apply concepts of diffraction to calculate the resolving power.

Distinguish between the stationary waves in pipes with open and closed ends.

Verify laws of vibrating string using a sonometer.

Explain the physics involved in musical instruments.

Unit IV

Electrostatics and electric current

Use Gaus's law to obtain the electric field for a charge distribution.

Relate potential energy to work done to establish a charge distribution.
Determine the electrostatic potential for a given charge distribution.

Distingusih between conductors and insulators.

Visualize polarization of dielectrics.

Categorize dielectrics based on molecular properties.

Know the effect of dielectric material used between the plates of a capacitor on its capacitance.
Apply Kirchhoff’s laws to determine the current in different branches of a circuit.
Find the value of an unknown resistance by using a meter bridge.

Find the emf and internal resistance of a cell using potentiometer.

Convert galvanometer into voltmeter and ammeter by using a suitable resistor.




Unit V
Magnetism

Realize that Lorentz force law is the basis for defining unit of magnetic field.

Visualize cyclotron motion of a charged particle in a magnetic field.

Analyze and calculate magnetic force on a straight and arbitrarily shaped current carrying
wires and a closed wire circuit.

Apply the Biot-Savart law to calculate the magnetic field produced by various distributions
of currents.

Use Ampere’s law to get magnetic fields produced by a current distribution.

Compare gravitational, magnetic and electrostatic potentials.

Distinguish between paramagnitic, diamagnetic and ferromagnetic materials.

Relate the concept of flux to experiments of Faraday and Henry.

Relate Lenz’s law to the conservation of energy.

Visualize the concept of eddy currents.

Determine the mutual inductance of a given pair of coils.

Apply laws of induction to explain the working of a generator.

Establish a relation between the power dissipated by an AC current in a resistor and the value
of the rms current.

Visualize the concept of phases to represent AC current.

Explain the passage of AC current through circuits having resistors, capacitors and inductors.

Explain the concept of resonance in LCR circuits.

Unit VI
Modern Physics

Establish validity of particle nature of light from experimental results.

Determine the necessary wavelength range of radiation to obtain photocurrent from given
metals.

Visualize the dual nature of matter and dual nature of light.

Apply the wave nature of electrons to illustrate how better resolution can be obtained with
an electron microscope.

Check the correctness of different atomic models by comparing results of various experiments.
Identify the constituents of atomic nuclei.

Differentiate between electromagnetic and atomic forces.

Obtain the age of a radioactive sample from its activity.

Judge the importance of nuclear power.

Explain use of p-n junction diode as a rectifier.

Find applications of special purpose diodes for every day use.

Explain working of solar cell, LED and photodiode.

Relate the p-n junction diode and special purpose diodes.

Realize transistor as an important building block of electronic circuits, analyze situations in
which transistor can be used.

CONTENTS
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1. Rotational Dynamics

) Can you recall? N

=

What is circular motion?

What is the concept of centre of mass?
What are kinematical equations of
motion?

4. Do you know real and pseudo forces,

L their origin and applications?
1.1 Introduction:

Circular motion is an essential part of our
daily life. Every day we come across several
revolving or rotating (rigid) objects. During
revolution, the object (every particle in the
object) undergoes circular motion about some
point outside the object or about some other
object, while during rotation the motion is about
an axis of rotation passing through the object.
1.2 Characteristics of Circular Motion:

1) It is an accelerated motion: As the
direction of velocity changes at every
instant, it is an accelerated motion.

2) Itisaperiodic motion: During the motion,
the particle repeats its path along the same
trajectory. Thus, the motion is periodic.

1.2.1 Kinematics of Circular Motion:

As seen in XI™ Std, in order to describe
a circular motion, we use the quantities
angular displacement 6, angular velocity

CORN

_ do : _ do
®=— and angular acceleration o =—

dt dt
which are analogous to displacement

. ds . av

s, velocity V=—- and acceleration a :E
used in translational motion.

Also, the tangential velocity is given by
V=woxT where @ isthe angular velocity.

Here, the position vector r is the radius
vector from the centre of the circular motion.
The magnitude of VisvV= or.

Direction of g is always along the axis of
rotation and is given by the right-hand thumb
rule. To know the direction of @, curl the fingers

of the right hand along the sense of rotation,
with the thumb outstretched. The outstretched
thumb then gives the direction of & .

-
w
.—))
w
v

Fig. 1.1: Directions of angular velocity.

If T is period of circular motion or periodic
i . 21
time and n is the frequency, o =27n=—"—
Uniform circular motion: During ci%ular
motion if the speed of the particle remains
constant, it is called Uniform Circular Motion
(UCM). In this case, only the direction of its
velocity changes at every instant in such a way
that the velocity is always tangential to the
path. The acceleration responsible for this is
the centripetal or radial acceleration d, = —a*7
For UCM, its magnitude is constant and it
iS a=w’r=—=ve. It is always directed
towards the Centre of the circular motion
(along 1), hence called centripetal.

—
\%
_)
w
~—>
cO®< g

Fig. 1.2: Directions of linear velocity and
acceleration.

Illustration: Circular motion of any particle
of a fan rotating uniformly.

Non-uniform circular motion: When a fan is
switched ON or OFF, the speeds of particles
of the fan go on increasing or decreasing
for some time, however their directions are
always tangential to their circular trajectories.

B P I



During this time, it is a non-uniform circular
motion. As the velocity is still tangential, the
centripetal or radial acceleration a, is still
there. However, for non-uniform circular
motion, the magnitude of g is not constant.

The acceleration responsible for changing
the magnitude of velocity is directed along
or opposite to the velocity, hence always
tangential and is called as tangential
acceleration a, .

As magnitude of tangential velocity v
iIs changing during a non-uniform circular
motion, the corresponding angular velocity o
is also changing at every instanE This is due to

.~ do
the angular acceleration g = —

Though the motion is ngfl-uniform, the
particles are still in the same plane. Hence,
the direction of a is still along the axis of
rotation. For increasing speed, it is along the
direction of @ while during decreasing speed,
it is opposite to that of @ .

TE’ A
a ot
\{

Fig. 1.3: Direction of angular acceleration.

) Do you know? ~

If the angular acceleration o is along
any direction other than axial, it will have
a component perpendicular to the axis.
Thus, it will change the direction of @ also,
which will change the plane of rotation as
@ is always perpendicular to the plane of

A rotation.
% If o is
C:) constant in
a magnitude,
= but always
* \ perpendicular
to o, it will
- J

~

always change only the direction of @ and\
never its magnitude thereby continuously
changing the plane of rotation. (This is
similar to an acceleration a perpendicular
Qc; velocity v changing only its direction). )

If the angular acceleration @ is constant
and along the axis of rotation, all 6, and d
will be directed along the axis. This makes it
possible to use scalar notation and write the
kinematical equations of motion analogous to
those for translational motion as given in the
table 1 at the end of the topic.

(Example 1: A fan is rotating at 90 rpm.W
It is then switched OFF. It stops after 21
revolutions. Calculate the time taken by it
to stop assuming that the frictional torque
IS constant.

Solution:

N, =90rpm =1.51ps ..w, = 27N, :371ﬂ
S

The angle through which the blades of
the fan move while stopping is 6 = 2znN
= 2n (21) = 42 nw rad, o = 0 (fan stops).
Using equations analogous to kinematical
equations of motion

azc()—c()ozc()z—oz)o2
t 20
0=3x _0-(Gr) e
ot 2(427) T

Remark: One can also use the unit
‘revolution” for angle and get rid of =
throughout (for such data). In this case,
@ = 15rpsand 6 = 21 rev. )

1.2.2 Dynamics of Circular Motion
(Centripetal Force and Centrifugal Force):
i) Centripetal force (CPF): As seen above,
the acceleration responsible for circular
motion is the centripetal or radial acceleration
d =-w’. The force providing this

acceleration is the centripetal or radial force,
CPF=-mo’F

PUBREE I
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I‘C) Remember thls/ ~

(i) The word centripetal is NOT the name
or type of that force (like gravitational
force, nuclear force, etc). It is the
adjective or property of that force
saying that the direction of this force
is along the radius and towards centre
(centre seeking).

(i) While performing circular or rotational
motion, the resultant of all the real
forces acting upon the body is (or, must
be) towards the centre, hence we call
this resultant force to be centripetal
force. Under the action of this resultant
force, the direction of the velocity is
always maintained tangential to the
circular track.

The vice versa need not be true,
i.e., the resultant force directed towards
the centre may not always result into a
circular motion. (In the Chapter 7 you
will know that during an s.h.m. also the
force is always directed to the centre of
the motion). For a motion to be circular,
correspondingly matching tangential
velocity is also essential.

(iii) Obviously, this discussion is in an
inertial frame of reference in which
we are observing that the body is
performing a circular motion.

(iv) In magnitude, centripetal force
2
v

=mro’ = = mve

r

J

(&
il) Centrifugal force (c.f.f.):
Visualize yourself on a merry-go-round
rotating uniformly. If you close your eyes, you
will not know that you are performing a circular
motion but you will feel that you are at rest. In
order to explain that you are at rest, you need
to consider a force equal in magnitude to the
resultant real force, but directed opposite, i.e.,
away from the centre. This force, (+ma)217) is
the centrifugal (away from the centre) force. It
is a pseudo force arising due to the centripetal
acceleration of the frame of reference.

It must be understood that centrifugal
force is a non-real force, but NOT an
imaginary force. Remember, before the merry-
go-round reaches its uniform speed, you were
really experiencing an outward pull (because,
centrifugal force is greater than the resultant
force towards the centre). A force measuring
instrument can record it as well.

On reaching the uniform speed, in the
frame of reference of merry-go-round, this
centrifugal force exactly balances the resultant
of all the real forces. The resultant force in
that frame of reference is thus zero. Thus, only
in such a frame of reference we can say that
the centrifugal force balances the centripetal
force. It must be remembered that in this case,
centrifugal force means the ‘net pseudo force’
and centripetal force means the ‘resultant of
all the real forces’.

There are two ways of writing force
equation for a circular motion:

Resultant force = —mw?7  or
mo*F + Z(real forces) =0

Attach a suitable mass to spring balance so
that it stretches by about half is capacity.
Now whirl the spring balance so that the
mass performs a horizontal motion. You will
notice that the balance now reads more mass
for the same mass. Can you explain this?

|\ J

1.3 Applications of Uniform Circular Motion:
1.3.1 Vehicle Along a Horizontal Circular
Track:

Figure 1.4 shows vertical section of a car
on a horizontal circular track of radius r. Plane
of figure is a vertical plane, perpendicular to
the track but includes only centre C of the
track. Forces acting on the car (considered
to be a particle) are (i) weight mg, vertically
downwards, (ii) normal reaction N, vertically
upwards that balances the weight mg and (iii)

R GEID VN



force of static friction f_between road and the
tyres. This is static friction because it prevents
the vehicle from outward slipping or skidding.
This is the resultant force which is centripetal.

N
C s
ql <
mg
¢ p >!

Fig. 1.4: Vehicle on a horizontal road.
While working in the frame of reference
attached to the wvehicle, it balances the

centrifugal force. v
mg=Nandf, =mre’ =

-
S ro® v
N g g
For a given track, radius r is constant. For

given vehicle, mg = N is constant. Thus, as the

speed v increases, the force of static friction f,

also increases. However, f_has an upper limit

(f,), . =mu.N,where 4 is the coefficient of

static friction between road and tyres of the

vehicle. This imposes an upper limit to the

speed v.

At the maximum possible speed v, we can

write

() Vo
N s }"g U max s

) Do you know? ~

(i) In the discussion till now, we had
assumed the vehicle to be a point.
In reality, if it is a four wheeler, the
resultant normal reaction is due to all
the four tyres. Normal reactions at all
the four tyres are never equal while
undergoing circular motion. Also, the
centrifugal force acts through the centre

&
,—C) Use your brain power>ﬁ

but above it. Thus, the frictional force
and the centrifugal force result into a
torque which may topple the vehicle
(even a two wheeler).

(if) For a two wheeler, it is a must for
the rider to incline with respect to the
vertical to prevent toppling.

J

(I) Obtain the condition for not toppling
for a four-wheeler. On what factors
does it depend, and in what way? Think
about the normal reactions — where are
those and how much are those! What
is the recommendation on loading the
vehicle for not toppling easily? If a
vehicle topples while turning, which
wheels leave the contact? Why? How
does it affect the tyres? What is the
recommendation for this?

(I1) Determine the angle to be made with
the vertical by a two wheeler rider while
turning on a horizontal track.

Hint: For both (I) and (Il) above, find the
torque that balances the torque due
to centrifugal force and torque due to
static friction force.

(11T)We have mentioned about static friction
between road and the tyres. Why is it
static? What about the kinetic friction
between road and the tyres?

(V) What do you do if your vehicle is
trapped on a slippery or a sandy road?

of mass, which is not at the ground level,
& J

What is the physics involved?

. J

1.3.2 Well (or Wall) of Death: (dra =1 %31):

This is a vertical cylindrical wall of radius
r inside which a vehicle is driven in horizontal
circles. This can be seen while performing
stunts.

As shown in the Fig. 1.5, the forces acting
on the vehicle (assumed to be a point) are (i)
Normal reaction N acting horizontally and

PUBPS I
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A

mg

Fig. 1.5: Well of death.

towards the centre, (ii) Weight mg acting
vertically downwards, and (iii) Force of static
friction f_ acting vertically upwards between
vertical wall and the tyres. It is static friction
because it has to prevent the downward
slipping. Its magnitude is equal to mg, as this
is the only upward force.

Normal reaction N is thus the resultant
centripetal force (or the only force that can
balance the centrifugal force). Thus, in

magnitude, )

N=mro’ =" and mg = f,

Force of static friction /, is always less than
or equal to u,N.

2
s S,uSN.'.mgS,us(mv J
r

AN
C) Remember this > \
2

(i) N should always be equal to ol
r S

(i) Inthis case, f =i N is valid only for the
minimum speed as f. should always be
equal to mg.

(iii) During the derivation, the vehicle is
assumed to be a particle. In reality, it
is not so. During revolutions in such
a well, a two-wheeler rider is never
horizontal, else, the torque due to her/
his weight will topple her/him. Think
of the torque that balances the torque )

due to the weight. What about a four- )
wheeler?

(iv) In this case, the angle made by the road
surface with the horizontal is 90°, i.e., if
the road is banked at 90°, it imposes a
lower limit on the turning speed. In the
previous sub-section we saw that for an
unbanked (banking angle 0) road there
is an upper limit for the turning speed.
It means that for any other banking
angle (0 < @ < 90°), the turning speed
will have the upper as well as the lower
limit.

\ & J

Example 2: A motor cyclist (to be treated\
as a point mass) is to undertake horizontal
circles inside the cylindrical wall of a well
of inner radius 4 m. Coefficient of static
friction between the tyres and the wall is
0.4. Calculate the minimum speed and
frequency necessary to perform this stunt.
(Use g = 10 m/s?)

Solution:
rg _ f4><1
04
min: = ~0.4rev s
2nr 2xm x4
& J

1.3.3 Vehicle on a Banked Road:

As seen earlier, while taking a turn on
a horizontal road, the force of static friction
between the tyres of the vehicle and the road
provides the necessary centripetal force (or
balances the centrifugal force). However, the
frictional force is having an upper limit. Also,
its value is usually not constant as the road
surface is not uniform. Thus, in real life, we
should not depend upon it, as far as possible.
For this purpose, the surfaces of curved roads
are tilted with the horizontal with some angle
0. This is called banking of a road or the road
is said to be banked.

Figure 1.6 Shows the vertical section of
a vehicle on a curved road of radius r banked

e B s
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Fig 1.6: Vehicle on a banked road.

atan angle 0 with the horizontal. Considering
the vehicle to be a point and ignoring friction
(not eliminating) and other non-conservative
forces like air resistance, there are two forces
acting on the vehicle, (i) weight mg, vertically
downwards and (ii) normal reaction N,
perpendicular to the surface of the road. As
the motion of the vehicle is along a horizontal
circle, the resultant force must be horizontal
and directed towards the centre of the track. It
means, the vertical force mg must be balanced.
Thus, we have to resolve the normal reaction
N along the vertical and along the horizontal.
Its vertical component Ncos @ balances weight
mg. Horizontal component Nsing being
the resultant force, must be the necessary
centripetal force (or balance the centrifugal
force). Thus, in magnitude,

N cos6 =mg and

[

2

Y otanf="— - (11)
r rg

(a) Most safe speed: For a particular road, r

and 0 are fixed. Thus, this expression gives
us the expression for the most safe speed (not
a minimum or a maximum speed) on this road

=,/rgtan®

3 2
NsinO = mro” =

as v,
(b) Banking angle: While designing
a road, this expression helps us in
knowing the angle of banking as
2
0=tan'| — (1.2)
rg

(c) Speed limits: Figure 1.7 and 1.8 show
vertical section of a vehicle on a rough
curved road of radius r, banked at an angle
0 . If the vehicle is running exactly at the speed

= /rg tan® , the forces acting on the vehicle

,—C) Use your brain power>ﬁ

As a civil engineer, you are given contract
to construct a curved road in a ghat. In order
to obtain the banking angle g, you need to
decide the speed limit. How will you decide
 the values of speed v and radius r?

are (i) weight mg acting vertically downwards
and (ii) normal reaction N acting perpendicular
to the road. As seen above, only at this speed,
the resultant of these two forces (which is
Nsing) is the necessary centripetal force (or
balances the centrifugal force). In practice,
vehicles never travel exactly with this speed.
For speeds other than this, the component of
force of static friction between road and the

tyres helps us, up to a certain limit.
N  Ncost

to centre
of motion  Nsinf

Fig 1.7: Banked road : lower speed limit.
N Ncos6

to centre

of motion  Nsind

Fig 1.8: Banked road : upper speed limit.

2
Forspeeds v, <\/rgtan6 ,

YL < Nsin
(or l;l sing is greater than the centrrifugal force
k! ). In this case, the direction of force of

static friction f_ between road and the tyres
is directed along the inclination of the road,

upwards (Fig. 1.7). Its horizontal component
is parallel and opposite to Nsing. These two
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forces take care of the necessary centripetal
force (or balance the centrifugal force).
s.mg = f, sinf+N cos® and

2
mv,

=Nsin0 - f, cosO
r

For minimum possible speed, f is
maximum and equal to x#N. Using this in the
equations above and solving for minimum
possible speed, we get

1) min min 9 1+ ‘us tan @ -t (13)
For u,>tan6,v . = 0. This is true for most

of the rough roads, banked at smaller angles.
2

(d) For speeds v, >4/rgtan0 , V2 5 Nsin@
r

(or N sin6 is less than the centrifugal force
2

). In this case, the direction of force
ofrstatic friction f, between road and the
tyres is directed along the inclination of the
road, downwards (Fig. 1.8). Its horizontal
component is parallel to Nsing. These two
forces take care of the necessary centripetal
force (or balance the centrifugal force).
~.mg =N cosO— f, sinf and

2
mv,

=Nsin0 + f, cosO
-

For maximum possible speed, f, is
maximum and equal to u N . Using this in the
equations above, and solving for maximum
possible speed, we get

(V2 )max = Vi = \/l’g (Mj - (14)

l—p, tan6

If ug =cot @ ,v =oo But (u)_ =1
Thus, for 0 > 45° v__ = oo. However, for
heavily banked road, minimum limit may
be important. Try to relate the concepts used
while explaining the well of death.

(e) For u, =0, both the equations 1.3 and 1.4
giveus v =/rgtan® Which is the safest speed
on a banked road as we don’t take the help of
friction.

(Example 3: A racing track of curvature |
9.9 m is banked at tan™'0.5. Coefficient
of static friction between the track and
the tyres of a vehicle is 0.2. Determine the
speed limits with 10 % margin.

Solution:

tan@ —
Vmin: rg P
1+ p, tan@
_ Jo.gx10| 92292
1+(0.2x0.5)

=27 =5.196m /s

Allowed v . should be 10% higher than
this.
110

(Vmin )allowed = 3180 ﬁ

—57162
S

v = |r tan 6 + p
e J 1—u, tan6

:\/9.9“0[ 0.5+0.2 J
1-(0.2x0.5)

—J77=8.775m/s

Allowed v__ should be 10% lower than
this.

90

(Ve ) ey = 8-775%——=7.896m /s
allowe 100

& _J

,—C) Use your brain power>ﬁ

e Iffriction is zero, can a vehicle move on
the road? Why are we not considering
the friction in deriving the expression
for the banking angle?

» What about the kinetic friction between

(| theroad and the tyres?
1.3.4 Conical Pendulum:
A tiny mass (assumed to be a point object
and called a bob) connected to a long, flexible,
massless, inextensible string, and suspended
to a rigid support is called a pendulum. If the

J
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string is made to oscillate in a single vertical
plane, we call it a simple pendulum (to be
studied in the Chapter 5).

We can also revolve the string in such a
way that the string moves along the surface of
a right circular cone of vertical axis and the
point object performs a (practically) uniform
horizontal circular motion. In such a case the
system is called a conical pendulum.

Fig. 1.9 (b): In a non- inertial frame

Figure 1.9 shows the vertical section of
a conical pendulum having bob (point mass)
of mass m and string of length L. In a given
position B, the forces acting on the bob are (i)
its weight mg directed vertically downwards
and (ii) the force T, due to the tension in the
string, directed along the string, towards
the support A. As the motion of the bob is a
horizontal circular motion, the resultant force
must be horizontal and directed towards the
centre C of the circular motion. For this, all
the vertical forces must cancel. Hence, we
shall resolve the force T, due to the tension.
If 6 is the angle made by the string with the
vertical, at any position (semi-vertical angle
of the cone), the vertical component T, cos
0 balances the weight mg. The horizontal
component T, sind then becomes the resultant
force which is centripetal.
.. T, sin@ = centripetal force = mro® --- (1.5)
Also, T, cos® =mg --- (1.6)
Dividing eq (1.5) by Eg. (1.6), we get,

W = gsin6
rcosf
Radius r of the circular motion is » = Lsin0 .
If T is the period of revolution of the bob,

T N Lcos6

~Period T =27 |01
g
Frequency of revolution,
11 g --- (1.8)

n=—s=—
T 2z \ LcosO
In the frame of reference attached to the

bob, the centrifugal force should balance the
resultant of all the real forces (which we call
CPF) for the bob to be at rest.

- T,sin@ = mre? --- (in magnitude). This is
the same as the Eq. (1.5)

,—C) Do you know? ~

(i) Foragivensetup,Landg are constant.
Thus, both period and frequency
depend upon 6.

(if) During revolutions, the string can
NEVER become horizontal. This can
be explained in two different ways.

(@) If the string becomes horizontal,
the force due to tension will also be
horizontal. Its vertical component will
then be zero. In this case, nothing will
be there to balance mg.

(b) For horizontal string, i =90°. This will
indicate the frequency to be infinite
and the period to be zero, which are
impossible. Also, inthiscase, thetension
T, =2

cosf

. 1 2 1 2 2
energy —Emv —Emr " of the bob

will be infinite.

in the string and the kinetic

Activity N

A stone is tied to a string and whirled
such that the stone performs horizontal
circular motion. It can be seen that the string

_is NEVER horizontal.

J
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(Example 1.4: A merry-go-round usually\
consists of a central vertical pillar. At the
top of it there are horizontal rods which can
rotate about vertical axis. At the end of this
horizontal rod there is a vertical rod fitted
like an elbow joint. At the lower end of
each vertical rod, there is a horse on which
the rider can sit. As the merry-go-round is
set into rotation, these vertical rods move
away from the axle by making some angle
with the vertical.

The figure above shows vertical section
of a merry-go-round in which the ‘initially
vertical’ rods are inclined with the vertical at
37°, during rotation. Calculate the frequency
of revolution of the merry-go-round.

(Use g = n? m/s? and sin 37° = 0.6)
Solution: Length of the horizontal rod,
H=21m
Length of the “initially vertical’ rod,
V=15m, 6 =37°
.. Radius of the horizontal circular motion
of therider=H +Vsin37°= 3.0m
If T is the tension along the inclined rod,
Tcos @ =mgand T sinf =mrw? = 4n? mrn?

Ar’rn®

g

) tan6 1 1 2
..n:‘f =—r1evs ...asg=T
4r 4

Example 1.5: Semi-vertical angle of the
conical section of a funnel is 37°. There is a
small ball kept inside the funnel. On rotating
the funnel, the maximum speed that the ball
can have in order to remain in the funnel is 2
m/s. Calculate inner radius of the brim of the
funnel. Is there any limit upon the frequency
of rotation? How much is it? Is it lower or
upper limit? Give a logical reasoning. (Use

CS.tan @ =

( )
2

Solution: N sin@ = mgand N cosf = mv
v
2
tanezg.'.r:w
v g
2
tan 6
g

V=ro=2nrm

N Nsind

If we go for the lower
limit of the speed (while
rotating),
v—>0..r—0, but the
"a frequency n increases.
Hence a specific upper
limit is not possible in the case of frequency.
Thus, the practical limit on the frequency of
rotation is its lower limit. It will be possible

forr=r,_
A\ 1
.n,, =—"—=——=lrev/s
2rr 0.37
max
| _J

Using a funnel and a marble or a ball bearing
try to work out the situation in the above
question. Try to realize that as the marble
goes towards the brim, its linear speed
increases but its angular speed decreases.

g=10 m/s? and sin 37° = 0.6)

J

When nearing the base, it is the other way.
. J

1.4 Vertical Circular Motion:
Two types of vertical circular motions are
commonly observed in practice:

(a) A controlled vertical circular motion such
as a giant wheel or similar games. In this
case the speed is either kept constant or
NOT totally controlled by gravity.

(b) Vertical circular motion controlled only
by gravity. In this case, we initially
supply the necessary energy (mostly) at
the lowest point. Then onwards, the entire
Kinetics is governed by the gravitational
force. During the motion, there is
interconversion of Kkinetic energy and
gravitational potential energy.
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1.4.1 Point Mass Undergoing Vertical
Circular Motion Under Gravity:
Case I: Mass tied to a string:

The figure 1.10 shows a bob (treated as
a point mass) tied to a (practically) massless,
inextensible and flexible string. It is whirled
along a vertical circle so that the bob performs
a vertical circular motion and the string rotates
in a vertical plane. At any position of the bob,
there are only two forces acting on the bob:

&
900D) L.

(retardes)

(soIpi1d]

mg
Fig 1.10: Vertical circular motion.
(a) its weight mg, vertically downwards, which

is constant and (b) the force due to the tension
along the string, directed along the string and
towards the centre. Its magnitude changes
periodically with time and location.

As the motion is non uniform, the resultant
of these two forces is not directed towards
the center except at the uppermost and the
lowermost positions of the bob. At all the other
positions, part of the resultant is tangential and
is used to change the speed.

Uppermost position (A): Both, weight mg and
force due to tension T, are downwards, i.e.,
towards the centre. In this case, their resultant
is used only as the centripetal force. Thus, if

v, is the speed at the uppermost point, we get,
2

mg+T, = ~ (1.9)

Radius r of the circular motion is the
length of the string. For minimum possible
speed at this point (or if the motion is to be

realized with minimum possible energy),

T,=0 (v,) =yrg --- (1.10)
Lowermost position (B): Force due to the
tension, T is vertically upwards, i.e., towards
the centre, and opposite to mg. In this case also
their resultant is the centripetal force. If v, is
the speed at the lowermost point, we get,

2
T, —mg=""% - (1.12)

r
While coming down from the uppermost to

the lowermost point, the vertical displacement
is 2r and the motion is governed only by
gravity. Hence the corresponding decrease in
the gravitational potential energy is converted
into the kinetic energy.

mg(Zr) = Emsz —Emvi

— (1.12)

VL=V =4drg
Using this in the eq (1.11), and using (VA) min
from Eq. (1.10) we get,

(vy) =+5rg - (1.13)
Subtracting eq (1.9) from eq (1.11) , we can
write,

T,-T,-2mg= %(VZB —Vi) --- (1.14)

Using eq (1.12) and rearranging, we get,
T,-T, =6mg - (1.15)
Positions when the string is horizontal (C
and D): Force due to the tension is the only
force towards the centre as weight mg is
perpendicular to the tension. Thus, force due
to the tension is the centripetal force used to
change the direction of the velocity and weight
mg is used only to change the speed.
Using similar mathematics, it can be shown

that
I.-T,=1,-T, =3mg and

(VC )min Z(VD )min = \/%

Arbitrary positions: Force due to the tension
and weight are neither along the same line,
nor perpendicular. Tangential component of
weight is used to change the speed. It decreases
the speed while going up and increases it while
coming down.
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C) Remember this> ~

1. Equation (1.15) is independent of v and r.

2. T, can never be exactly equal to zero in
the case of a string, else, the string will
slack. .. T, > 6 mg.

3. None of the parameters (including the
linear and angular accelerations) are
constant during such a motion. Obviously,
kinematical equations given in the tablel
are not applicable.

4. We can determine the position vector or
velocity at any instant using the energy
conservation. But as the function of the
radius vector is not integrable (definite
integration is not possible), theoretically
it is not possible to determine the period
or frequency. However, experimentally
the period can be measured.

5. Equations (1.10) and (1.13) give only
the respective minimum speeds at the
uppermost and the lowermost points. Any
higher speeds obeying the equation (1.14)
are allowed.

6. In reality, we have to continuously
supply some energy to overcome the air
resistance.

Case I1: Mass tied to a rod: Consider a bob
(point mass) tied to a (practically massless and
rigid) rod and whirled along a vertical circle.
The basic difference between the rod and the
string is that the string needs some tension at
all the points, including the uppermost point.
Thus, a certain minimum speed, Eq. (1.10), is
necessary at the uppermost point in the case
of a string. In the case of a rod, as the rod is
rigid, such a condition is not necessary. Thus
(practically) zero speed is possible at the
uppermost point.
Using similar mathematics, it is left to the
readers to show that

(Vlowermost )min - \/% = 2\/5

v_.at the rod horizontal position =\l2rg
-T =6mg

uppermost

lowermost

1.4.2 Sphere of Death (wegie):

This is a popular show in a circus. During
this, two-wheeler rider (or riders) undergo
rounds inside a hollow sphere. Starting with
small horizontal circles, they eventually
perform revolutions along vertical circles. The
dynamics of this vertical circular motion is
the same as that of the point mass tied to the
string, except that the force due to tension T is
replaced by the normal reaction force N.

If you have seen this show, try to visualize
that initially there are nearly horizontal circles.
The linear speed is more for larger circles but
angular speed (frequency) is more for smaller
circles (while starting or stopping). This is as
per the theory of conical pendulum.

1.4.3 Vehicle at the Top of a Convex Over-
Bridge:

-
"""""
- ~
-
»

convex over
bridge

C. v

Fig. 1.11: Vehicle on a convex over-bridge.

Figure shows a vehicle at the top of a
convex over bridge, during its motion (part
of vertical circular motion). Forces acting on
the vehicle are (a) Weight mg and (b) Normal
reaction force N, both along the vertical line
(topmost position). The resultant of these two
must provide the necessary centripetal force
(vertically downwards) if the vehicle is at the
uppermost position. Thus, if v is the speed at

the uppermost point,
mv

mg—N =
r
As the speed is increased, N goes on

decreasing. Normal reaction is an indication
of contact. Thus, for just maintaining contact,
N = 0. This imposes an upper limit on the speed
as v, =\rg

max

IV



,—C) Do you know? ~

Roller coaster is a common event in the
amusement parks. During this ride, all
the parts of the vertical circular motion
described above can be experienced. The
mayjor force that we experience during this is
the normal reaction force. Those who have
experienced this, should try to recall the
changes in the normal reaction experienced
by us during various parts of the track.

- J

r—C) Use your brain power>ﬁ

» What is expected to happen if one travels
fast over a speed breaker? Why?

» How does the normal force on a concave
suspension bridge change when a vehicle

is travelling on it with constant speed?
. J

(Example 1.6: A tiny stone of mass 20 g is
tied to a practically massless, inextensible,
flexible string and whirled along vertical
circles. Speed of the stone is 8 m/s when
the centripetal force is exactly equal to the
force due to the tension.
Calculate minimum and maximum Kinetic
energies of the stone during the entire circle.

Let & =0 be the angular position of the
string, when the stone is at the lowermost
position. Determine the angular position of
the string when the force due to tension is
numerically equal to weight of the stone.
Use g = 10 m/s? and length of the string =
1.8m
Solution: When the string is horizontal, the
force due to the tension is the centripetal
force. Thus, vertical displacements of the
bob for minimum and maximum energy
positions are radius r each.

If K.E.  andK.E. . arethe respective
kinetic energies at the uppermost and the

lowermost points,
1
KE. . —Em(S)2 =mgr  and

n — mgr

m

%m(8)2 ~K.E.

| J

( )

%(0.02)(8)2 ~K.E.,, =(0.02)(10)(1.8)

~K.E., =028]

K.E.. —%(0.02)(8)2 =(0.02)(10)(1.8)

- K.E :lmv2 =1J

‘max 2 max

- EC:D
m

at the lowermost position, for which § = 0.

2
T—mgcosO:m --- at any angle 0,
r

where the speed is v.
Thus, if T = mg, we get,

mv
mg —mg cosf =
r

~rg(l1-cosf)=v’ --- (A)
Vertical displacement at the angular
position @ is r(l—c089). Thus, the energy

equation at this position can be written as

1 1
Em(lO)2 —Emv2 — mg[r(l—cos@)]

By using Eq. A, we get
50—%rg(1—cos9) =rg(1—cos€)
.50 :%rg(l—COSQ)

. cosO = = -.0=148°25
27

\ J

1.5 Moment of Inertia as an Analogous
Quantity for Mass:

In XI" Std. we saw that angular
displacement,  angular  velocity  and
angular acceleration respectively replace
displacement, velocity and acceleration for
various kinematical equations. Also, torque is
an analogous quantity for force. Expressions of
linear momentum, force (for a fixed mass) and
Kinetic energy include mass as a common term.
In order to have their rotational analogues, we
need a replacement for mass.

If we open a door (with hinges), we give a
certain angular displacement to it. The efforts
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needed for this depend not only upon the mass
of the door, but also upon the (perpendicular)
distance from the axis of rotation, where we
apply the force. Thus, the quantity analogous
to mass includes not only the mass, but also
takes care of the distance wise distribution of
the mass around the axis of rotation. To know
the exact relation, let us derive an expression
for the rotational kinetic energy which is the
sum of the translational kinetic energies of all
the individual particles.

Fig. 1.12: A body of N particles.

Figure 1.12 shows a rigid object rotating
with a constant angular speed © about an
axis perpendicular to the plane of paper.
For theoretical simplification let us consider
the object to be consisting of N particles
of masses m, m, ..mg  at respective
perpendicular distances r, r,, .....r, from the
axis of rotation. As the object rotates, all these
particles perform UCM with the same angular
speed @, but with different linear speeds
vV, =ho,v,=hLo,...... vy = RO

Translational K.E. of the first particle is

KE, = %mlvl2 = %mlrfoo2

Similar will be the case of all the other
particles. Rotational K.E. of the object, is
the sum of individual translational kinetic
energies. Thus, rotational K.E.

.. Rotational K.E.

1 2 2 2 2 1 2
:—(mlr1 +m, 7, ...+mNrN)a) :Ela)

2
If Izzmi’”i replaces mass m and angular
speed ® replaces linear speed v, rotational

1 . .
K.E.zEIoo2 is analogous to translational

K.E.zlmvz. Thus, | is defined to be the
rotational inertia or moment of inertia (M.1.)
of the object about the given axis of rotation.
It is clear that the moment of inertia of an
object depends upon (i) individual masses and
(i) the distribution of these masses about the
given axis of rotation. For a different axis, it
will again depend upon the mass distribution
around that axis and will be different if there is
no symmetry.

During this discussion, for simplicity, we
assumed the object to be consisting of a finite
number of particles. In practice, usually, it
Is not so. For a homogeneous rigid object of
mathematically integrable mass distribution,
the moment of inertia is to be obtained by
integration as I:Irzdm. If integrable mass
distribution is not known, it is not possible to
obtain the moment of inertia theoretically, but
it can be determined experimentally.

Fig. 1.13: Moment of Inertia of a ring.
1.5.1 Moment of Inertia of a Uniform Ring:

An object is called a uniform ring if
its mass is (practically) situated uniformly
on the circumference of a circle (Fig 1.13).
Obviously, it is a two dimensional object of
negligible thickness. If it is rotating about its
own axis (line perpendicular to its plane and
passing through its centre), its entire mass M
is practically at a distance equal to its radius
R form the axis. Hence, the expression for the
moment of inertia of a uniform ring of mass M
and radius R is I = MR?,
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1.5.2 Moment of Inertia of a Uniform Disc:
Disc is a two dimensional circular object
of negligible thickness. It is said to be uniform
if its mass per unit area and its composition is
the same throughout. The ratio  — /7 _ MAss
is called the surface density. 4 area
Consider a uniform disc of mass M and
radius R rotating about its own axis, which is
the line perpendicular to its plane and passing

through its centre ..o = —-.

As it is a uniform c7|IrcuIar object, it can
be considered to be consisting of a number
of concentric rings of radii increasing from
(practically) zero to R. One of such rings of
mass dm is shown by shaded portion in the

Fig. 1.14.
d3

Elemental ring

Fig .1.14: Moment of Inertia of a disk.

Width of this ring is dr, which is so small
that the entire ring can be considered to be
of average radius r. (In practical sense, dr is
less than the least count of the instrument that

measures r, so that r is constant for that ring).
dm

2rr.dr

Area of thisring is A = 2zrdr ..o =

.. dm = 2nor.dr.

As it is a ring, this entire mass is at a
distance r from the axis of rotation. Thus, the
moment of inertia of this ring is | = dm (r?)

Moment of inertia (I) of the disc can now
be obtained by integrating | from r = 0 to
r=R

R
.'.I=J.Ir =|dm-r* =
0

Sty
= )

R
2nor-dr-rt = 27[0"'.1"3 -dr
0

4 4
S =2noc R— =2 M2 R— :lMRZ
4 TR 4 2

Using similar method, expressions for moment

of inertias of objects of several integrable
geometrical shapes can be derived. Some of
those are given in the Table 3 at the end of the
topic.

1.6 Radius of Gyration:

As stated earlier, theoretical calculation
of moment of inertia is possible only for
mathematically integrable geometrical shapes.
However, experimentally we can determine
the moment of inertia of any object. It depends
upon mass of that object and how that mass
is distributed from or around the given axis
of rotation. If we are interested in knowing
only the mass distribution around the axis of
rotation, we can express moment of inertia
of any object as 7 = pzx2, where M is mass
of that object. It means that the mass of that
object is effectively at a distance K from the
given axis of rotation. In this case, K is defined
as the radius of gyration of the object about
the given axis of rotation. In other words, if K
is radius of gyration for an object, 7 = MK” is
the moment of inertia of that object. Larger the
value of K, farther is the mass from the axis.

- - - - \
Consider a uniform ring and a uniform

disc, both of the same mass M and same
radius R. Let | and I, be their respective
moment of inertias.
If K and K, are their respective radii
of gyration, we can write,
| =MR2= MK} K =R and

_1 ME? . —
;=5 MRE= MK - K,= 5 2 KK,

It shows mathematically that K is
decided by the distribution of mass. In a
ring the entire mass is distributed at the
distance R, while for a disc, its mass is
distributed between 0 and R. Among any
objects of same mass and radius, ring has
the largest radius of gyration and hence
maximum M.I.

§ J
1.7 Theorem of Parallel Axes and Theorem

of Perpendicular Axes:
Expressions of moment of inertias of

e T~



regular geometrical shapes given in the table 3
are about their axes of symmetry. These are
derived by integration. However, every time
the axis need not be the axis of symmetry. In
simple transformations it may be parallel or
perpendicular to the symmetrical axis. For
example, if a rod is rotated about one of its
ends, the axis is parallel to its axis of symmetry.
If a disc or a ring is rotated about its diameter,
the axis is perpendicular to the central axis.
In such cases, simple transformations are
possible in the expressions of moment of
inertias. These are called theorem of parallel
axes and theorem of perpendicular axes.

1.7.1 Theorem of Parallel Axes:

In order to apply this theorem to any
object, we need two axes parallel to each other
with one of them passing through the centre of
mass of the object.

-
-
----
-
-

P B
Fig. 1.15: Theorem of parallel axes.

Figure 1.15 shows an object of mass M.
Axis MOP is any axis passing through point
O. Axis ACB is passing through the centre
of mass C of the object, parallel to the axis
MOP, and at a distance h from it (.. h = CO).
Consider a mass element dm located at point
D. Perpendicular on OC (produced) from point
D is DN. Moment of inertia of the object about
the axis ACB is I :j(DC)zdm, and about

the axis MOP it is 7 =I(DO)2 dm -

.1y = [(DO)"dm = [([DNT +[NOT’ ) dm

= [([DNT +INCT +2.NC.CO+[COT | dm

= [([DCT +2NC.h+ 1 ) dm

= [(DC)*dm +2h[NC.dm+ * [dm
Now, | (DC)"dm=I. and [dm=M

NC is the distance of a point from the
centre of mass. Any mass distribution is
symmetric about the centre of mass. Thus,
from the definition of the centre of mass,
INC.dm =0.

Ay =1+ MK

This is the mathematical form of the
theorem of parallel axes.

It states that, “The moment of inertia (1))
of an object about any axis is the sum of its
moment of inertia (1) about an axis parallel to
the given axis, and passing through the centre
of mass and the product of the mass of the
object and the square of the distance between
the two axes (Mh?).”

,—C) Use your brain power>ﬁ

In Fig. 1.15, the point D is chosen such that
we have to extend OC for the perpendicular
DN to fall on it. What will happen to the final
expression of I, if point D is so chosen that
 the perpendicular DN falls directly on OC? |

1.7.2 Theorem of Perpendicular Axes:

This theorem relates the moment of
inertias of a laminar object about three
mutually perpendicular and concurrent axes,
two of them in the plane of the object and
the third perpendicular to the object. Laminar
object is like a leaf, or any two dimensional

object, e.g., aring, a disc, any plane sheet, etc.

z
N

X
Fig. 1.16: Theorem of perpendicular axes.
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Figure 1.16 shows a rigid laminar object able
to rotate about three mutually perpendicular
axes x, y and z. Axes x and y are in the plane
of the object while the z axis is perpendicular
to it, and all are concurrent at O. Consider a
mass element dm located at any point P. PM
=y and PN = x are the perpendiculars drown
from P respectively on the x and y axes. The
respective perpendicular distances of point
M from x, y and z axes will then be y, x and
Vyi+x? . If 1, 1 and 1, are the respective
moment of inertias of the body about x, y and
Z axes, We can write,
= Iyzdm, I, :Ixzdm and

1, :J.(y2 +x2)dm

o :J.yzdm+J.x2dm =1, +1,

This is the mathematical form of the
theorem of perpendicular axes.

It states that, “The moment of inertia
(1) of a laminar object about an axis (z)
perpendicular to its plane is the sum of its
moment of inertias about two mutually
perpendicular axes (x and y) in its plane, all
the three axes being concurrent”.

( )
Example 1.7: A flywheel is a mechanical

device specifically designed to efficiently
store rotational energy. For a particular
machine it is in the form of a uniform 20 kg
disc of diameter 50 cm, able to rotate about
its own axis. Calculate its kinetic energy
when rotating at 1200 rpm. Use 7° =10.
Calculate its moment of inertia, in case it is
rotated about a tangent in its plane.

Solution: (1) As the flywheel is in the form
of a uniform disc rotating about its own

axis, J =1MR2
)

.. Rotational kinetic energy

_ Lo = L L ype agin
2 2\2

.. Rotational kinetic energy

( )

(1) Consider any two mutually perpendicular
diameters x and y of the flywheel. If the
flywheel rotates about these diameters, these
three axes (own axis and two diameters) will
be mutually perpendicular and concurrent.
Thus, perpendicular axes theorem is
applicable. Let |, be the moment of inertia
of the flywheel, when rotating about its
diameter. .. [, =1 =1,

Thus, according to the theorem of

perpendicular axes,
L=imrr =1 +1 =21,
z 2 X y
o, _Lyvr
4

Central axis

z
4

L) diameters

-

As the diameter passes through the centre
of mass of the (uniform) disc, 1, = 1.
Consider a tangent in the plane of the disc
and parallel to this diameter. It is at the
distance 4 =R from the diameter. Thus,
parallel axes theorem is applicable about
these two axes.

o =1 =1 +Mh=1 +MR?

T, parallel
5

1
= — MR?2+ MR? = 2 MR?
4 4

X

5 5
— MR? = 1 20 x 0.25?

© T, parallel - 4

=Mz’ (Rn) =20x10x(0.25x20)" =5000J

. J

= 1.5625 kg m?
J

i.8 Angular Momentum or Moment of
Linear Momentum:

The quantity in rotational mechanics,
analogous to linear momentum is angular
momentum or moment of linear momentum. It
is similar to the torque being moment of a force.
If P is the instantaneous linear momentum of
a particle undertaking a circular motion, its

"‘\v‘\r



angular momentum at that instance is given by
L=Fxp,were T isthe position vector from
the axis of rotation.

In magnitude, it is the product of linear
momentum and its perpendicular distance from
the axis of rotation. ..L =P x rsinf, where 6
is the smaller angle between the directions of
Pandr.

1.8.1 Expression for Angular Momentum in
Terms of Moment of Inertia:

Figure 1.12 in the section 1.5 shows a
rigid object rotating with a constant angular
speed @ about an axis perpendicular to the
plane of paper. For theoretical simplification
let us consider the object to be consisting of
N number of particles of masses m, m,, .....
m,, at respective perpendicular distances r,, r,,
.....r, from the axis of rotation. As the object
rotates, all these particles perform UCM with
same angular speed @, but with different linear
speedsv, =r, @,V,=r, ®, ...V, =T ©.

Directions of individual velocities vi,
v2, etc., are along the tangents to their
respective tracks. Linear momentum of the
first particle is of magnitude p, =m,v, =m,r, ®.
Its direction is along that of v,.

Its angular momentum
magnitude L, = p;i; = mr®

Similarly, L, = m,r}w, Ly=mpl@, oo
L, =mrio

For a rigid body with a fixed axis of
rotation, all these angular momentaare directed
along the axis of rotation, and this direction
can be obtained by using right hand thumb
rule. As all of them have the same direction,
their magnitudes can be algebraically added.
Thus, magnitude of angular momentum of the
body is given by

is thus of

_ 2 2 2
L=mnr o+myp,o+...+mr,o

=(mp’ +myry +...+myrs o =1
=(mn" +myr, +...+myry, Jo=1w

Where, [=mpr’ +myr +...+myry is the
moment of inertia of the body about the given

axis of rotation. The expression for angular
momentum L = l® is analogous to the
expression p = mv of linear momentum, if the
moment of inertia | replaces mass, which is
its physical significance.

1.9 Expression for Torque in Terms of
Moment of Inertia:

Fig 1.17: Expression for torque.

Figure 1.17 shows a rigid object rotating
with a constant angular acceleration o
about an axis perpendicular to the plane
of paper. For theoretical simplification let
us consider the object to be consisting of N
number of particles of masses m, m, .....m
at respective perpendicular distances r,, r,,
.....Ir, from the axis of rotation. As the object
rotates, all these particles perform circular
motion with same angular acceleration o, but
with different linear (tangential) accelerations
a, =no, a, =rna,...... , Ay =1y, etc.

Force experienced by the first particle is
Ji=ma, =mra

As these forces are tangential, their
respective perpendicular distances from the
axisarer,r,, .....r.

Thus, the torque experienced by the first
particle is of magnitude 7, = fi1; = mr’o

Similarly, 7, = m,ila, T, =myla ...
Ty = mNr,\fa

If the rotation is restricted to a single
plane, directions of all these torques are the
same, and along the axis. Magnitude of the
resultant torque is then given by

T=T,+T,+...+7,

N

_ 2 2 2 _
—(mlr1 +m,r, ...+mNrN)oz =la

e AT m



where, 1 :m1r12 +m2V22-'-+mNr1\27 is the
moment of inertia of the object about the given
axis of rotation.
The relation 7 =1« is analogous to
f =ma for the translational motion if the
moment of inertia | replaces mass, which is
its physical significance.
1.10 Conservation of Angular Momentum:
In the article 4.7 of XI" Std. we have
seen the conservation of linear momentum
which says that linear momentum of an
isolated system is conserved in the absence
of an external unbalanced force. As seen
earlier, torque and angular momentum are
the respective analogous quantities to force
and linear momentum in rotational dynamics.
With suitable changes this can be transformed
into the conservation of angular momentum.
As seen in the section 1.8, angular
momentum or the moment of linear momentum
of a system is given by L =7x p
where 7 is the position vector from the axis of
rotation and P is the linear momentum.
Differentiating with respect to time, we get,
dL d,. .\ . dp dr .
—:—(rxp):rx—+—><
dt dt dt dt
Now, ﬁzv and d_p:F .
dt dt

But 7 X F is the moment of force or torque 7 .
. dL
ST =—

dt -
Thus, if 7 =0, % =0or L = constant.

Hence, angular momentum L is conserved in
the absence of external unbalanced torque 7 .
This is the principle of conservation of angular
momentum, analogous to the conservation of
linear momentum.

Examples of conservation of angular
momentum: During some shows of ballet
dance, acrobat in a circus, sports like ice
skating, diving in a swimming pool, etc., the
principle of conservation of angular momentum
is realized. In all these applications the product
L=1Iw=1(2rn) is constant (once the players
acquire a certain speed). Thus, if the moment
of inertia | is increased, the angular speed and
hence the frequency of revolution n decreases.
Also, if the moment of inertia is decreased, the
frequency increases.

(i) Ballet dancers: During ice ballet, the
dancers have to undertake rounds of smaller
and larger radii. The dancers come together
while taking the rounds of smaller radius (near
the centre). In this case, the moment of inertia
of their system becomes minimum and the
frequency increases, to make it thrilling. While
outer rounds, the dancers outstretch their legs
and arms. This increases their moment of
inertia that reduces the angular speed and
hence the linear speed. This is essential to
prevent slipping.

(i) Diving in a swimming pool (during
competition): While on the diving board, the
divers stretch their body so as to increase the
moment of inertia. Immediately after leaving
the board, they fold their body. This reduces
the moment inertia considerably. As a result,
the frequency increases and they can complete
more rounds in air to make the show attractive.
Again, while entering into water they stretch
their body into a streamline shape. This allows
them a smooth entry into the water.

( )

Example 1.8: A spherical water balloon

is revolving at 60 rpm. In the course of

revolve now? Neglect all non-conservative
. m

Solution: —L=-1=

time, 48.8 % of its water leaks out. With

what frequency will the remaining balloon

forces. 3 1
my, V, \R,) = R, \m,

- J
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( )
Also, mo_ 100 _ 100 _ 1
m, 100-48.8 51.2 0.512

3
N LN LY
m ) 08

n, = 60rpm = 1rps, n,="7?

Being sphere, moment of inertia

5
2 -
PR LU (T I (T
5 I, (m, )\ R, m,
According to principle of conservation of
angular momentum, |0, = |, 0,

5
I 3
A 2rn =1,21n, " n, = [Lj n, = [ﬂj
I, m,

n, =(1.25)" x1=3.0521ps
Example 1.9: A ceiling fan having moment
of inertia 2 kg-m? attains its maximum
frequency of 60 rpm in ‘2t seconds.
Calculate its power rating.
Solution:
0, =0,0=2rn=2rx2=4rrad/s

_w-0, 4r-0

a =2 rad/s®

t 21
SP=t-o=Iloc-0=2%x2x4r

=167 watt = 50 watt

& J

1.11 Rolling Motion:

The objects like a cylinder, sphere,
wheels, etc. are quite often seen to perform
rolling motion. In the case of pure rolling,
two motions are undertaking simultaneously;
circular motion and linear motion. Individual
motion of the particles (except the one at the
centre of mass) is too difficult to describe.
However, for theory considerations we can
consider the actual motion to be the result of
(i) circular motion of the body as a whole,
about its own symmetric axis and
(i) linear motion of the body assuming it to
be concentrated at its centre of mass. In other
words, the centre of mass performs purely
translational motion.

Accordingly, the object possesses two
types of Kkinetic energies, rotational and
translational. Sum of these two is its total
Kinetic energy.

Consider an object of moment of inertia
I, rolling uniformly. Following quantities can
be related.

v = Linear speed of the centre of mass
R = Radius of the body
o = Angular speed of rotation of the body

Lo= % for any particle

M = Mass of the body
K = Radius of gyration of the body .. = MK?
Total kinetic energy of rolling = Translational
K.E. + Rotational K.E.

CE=tmviilre
2 2

1 1 ?
:—Mv2+—(MK2)(lJ
2 2

R
2
= lMV2 [1 +K—2j
2 R

It must be remembered that static friction
is essential for a purely rolling motion. In this
case, it prevents the sliding motion. You might
have noticed that many a times while rolling
down, the motion is initially a purely rolling
motion that later on turns out to be a sliding
motion. Similarly, if you push a sphere-like
object along a horizontal surface, initially it
slips for some distance and then starts rolling.
1.11.1 Linear Acceleration and Speed While
Pure Rolling Down an Inclined Plane:

Figure 1.18 shows a rigid object of mass
m and radius R, rolling down an inclined plane,
without slipping. Inclination of the plane with
the horizontal is 6. )

- (1.18)

~f~'~~



As the objects starts rolling down, its
gravitational P.E. is converted into K.E. of
rolling. Starting from rest, let v be the speed of
the centre of mass as the object comes down
through a vertical distance h.

From Eq. (1.18),

2
E=Lan i liw =L 1+K—2
2 2 2 R
1 K?
SE=mgh==Mv*|1+—
g 2 [ RzJ
- (1.19)

Lin«}elar distance travelled along the plane

iss=——
Sin
During this distance, the linear velocity
has increased from zero to v. If a is the linear

acceleration along the plane,
h ] 2gh 0

_ = _
[1+R2]

2
1+1§ - (1.20)

2as=v> —u’ .. 20( -
sin®

For pure sliding, without friction, the
acceleration is gsin@ and final velocity is

\J2gh . Thus, during pure rolling, the factor

K*). . -
[1 + Fj is effective for both the expressions.

Remarks :
I) For a rolling object, if the expression for
moment of inertia is of the form n (MR?), the

: : K’®
numerical factor n gives the value of ra for

that object.

For example, for a uniform solid sphere,
2. , K* 2
[==MR*=MK" ===
5 R 5
Similarly,
2

= =1, for a ring or a hollow cylinder

2
% = %for a uniform disc or a solid cylinder
K* 2 _
ra = 3 for a thin walled hollow sphere
(I1) When a rod rolls, it is actually a cylinder
that is rolling.

(111) While rolling, the ratio ‘Translational
K.E.: Rotational K.E.: Total K.E.” is

2 2
2

For example, for a hollow sphere, _225
Thus, for a rolling hollow sphere,

Translational K.E.: Rotational K.E.: Total
2 2
KE. =1—-:11+=(=3:2:5
3 3
Percentage wise, 60% of its kinetic energy

is translational and 40% is rotational.
Table 1 : Analogous kinematical equations
(o, s the initial angular velocity)

Equation for Analogous equation
translational for rotational
motion motion

u+v 600 + o
Vav = . -——_—
2 av 2
av _ v-u do -,
O === o=—=—
dt t dt t
S.Vv=u+at .'.a)=a)o+at
S=v_ -t
@ 0=w, -t
2 2
_ 1 2 _ 2
=ut+—at =w,t+at
2
2 _,2 2w+ 2060
vV =u"+2as 0" =0, +20

C) Internet my friend>—

http://hyperphysics.phy-astr.gsu.edu/hbase/
mi.html

https://issacphysics.org
https://www.engineeringtoolbox.com

 https://opentextbc.ca/physicstextbook
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Table 2: Analogous quantities between translational motion and rotational motion:

Translational motion

Rotational motion

. Symbol/ . Symbol/ Inter-relation,
Quantity y . Quantity y . . .
expression expression if possible
Linear " Angular - i
displacement S displacement 0 <"
Linear velocity Q:ﬁ Angular velocity o :? V=aoxT
t t
Linear .4V Angular ~ do D
. a=—- . o =— o =axr
acceleration dt acceleration dt
Rotational inertia
Inertia or mass m or moment of I 1= jrzdm =>mr?
inertia
Linear = = Angular - = F—ixs
momentum p=my momentum LS e
— dp - dL L L
Force = Torque == T=rx
S = q T 4
Work W=f-5 Work W=7 | -
aw - -
Power =—=fV Power P= aw _ ol 0 -
dt dt
Table 3: Expressions for moment of inertias for some symmetric objects:
. Expression of .
Qe moment of inertia AU
b
Thin ring or Central I = MR? @
hollow cylinder - i
(4]
L . 1 » R
Thin ring Diameter = EMR '
L
Annular ring or = -
thick walled Central I=—M(r; +1) S — ;
hollow cylinder S P !




Uniform disc or

| .
solid cylinder el = EMR |
&
1 L R
Uniform disc Diameter I= ZMR2
>
Thin walled 2. R )
hollow sphere G I= 3 MR (
()
: 2. 2
Solid sphere Central = EMR
<O
Uniform symmetric -2y (r; _rls) )
spherical shell el ~ (51 ¢

Perpendicular to

- - h 1
T?elgtgglfslgr] r?;![é)r length and passing I=—MD P :
g P through centre 12 R '
Thin uniform rod or IPerp(;ndlcéulatl)r o =Ly QID L
rectangular plate ength and about 3 ;
one end | ____________________ :
b
Uniform plate 1 /b/
or rectangular Central J= EM(LZ +b%) e

parallelepiped




(db)
Uniform solid _ 3 2
right circular cone GElE, I= 10 MR
iR
(db]
Uniform hollow _ L
right circular cone Central =7 MR g
" R—

‘ EXGI"CISeS OOOOOOGOKIKHKILILIIIIIIIIOGOIKIKILILIIIIIIIIOOIIKHKILILIIIIIIIIOOOE

Use g = 10 m/s?, unless, otherwise stated.
1. Choose the correct option.

i)

P)
Q)

When seen from below, the blades of
a ceiling fan are seen to be revolving
anticlockwise and their speed is
decreasing. Select correct statement
about the directions of its angular
velocity and angular acceleration.

(A) Angular velocity upwards, angular
acceleration downwards.

(B) Angular velocity downwards,
angular acceleration upwards.

(C) Both, angular velocity and angular
acceleration, upwards.

(D) Both, angular velocity and
angular acceleration, downwards.

A particle of mass 1 kg, tiedtoa 1.2 m
long string is whirled to perform vertical
circular motion, under gravity. Minimum
speed of a particle is 5 m/s. Consider
following statements.

Maximum speed must be 545 m/s.
Difference between maximum and
minimum tensions along the string is 60 N.
Select correct option.

(A) Only the statement P is correct.

(B) Only the statement Q is correct.

(C) Both the statements are correct.

(D) Both the statements are incorrect.

iii) Select correct statement about the

e B

(P)
Q)

formula (expression) of moment of

inertia (M.l.) in terms of mass M of

the object and some of its distance
parameter/s, such as R, L, etc.

(A) Different objects must have different
expressions for their M.1I.

(B) When rotating about their central
axis, a hollow right circular cone and
a disc have the same expression for
the M.1.

(C) Expression for the M.I. for a
parallelepiped rotating about the
transverse axis passing through its
centre includes its depth.

(D) Expression for M.1. of a rod and
that of a plane sheet is the same
about a transverse axis.

In a certain unit, the radius of gyration

of a uniform disc about its central and

transverse axis is +/2.5. Its radius of
gyration about a tangent in its plane (in
the same unit) must be

(A) V5 (B) 2.5

(C)2v25 (D) V125

Consider following cases:

A planet revolving in an elliptical orbit.

A planet revolving in a circular orbit.

Principle of conservation of angular

momentum comes in force in which of

these?



X)

(A) Only for (P)

(B) Only for (Q)

(C) For both, (P) and (Q)

(D) Neither for (P), nor for (Q)
A thin walled hollow cylinder is rolling
down an incline, without slipping. At
any instant, the ratio ”Rotational K.E.:
Translational K.E.: Total K.E.” is
(A) 1:1:2 (B) 1:2:3
(C) 111 (D) 2:1:3

2. Answer in brief.

i)
i)

i)

Why are curved roads banked?

Do we need a banked road for a two-
wheeler? Explain.

On what factors does the frequency
of a conical pendulum depends? Is it
independent of some factors?

Why is it useful to define radius of
gyration?

A uniform disc and a hollow right
circular cone have the same formula
for their M.1., when rotating about their
central axes. Why is it s0?

While driving along an unbanked
circular road, a two-wheeler rider has
to lean with the vertical. Why is it so?
With what angle the rider has to lean?
Derive the relevant expression. Why
such a leaning is not necessary for a four
wheeler?

Using the energy conservation, derive
the expressions for the minimum speeds
at different locations along a vertical
circular motion controlled by gravity.
Is zero speed possible at the uppermost
point? Under what condition/s? Also
prove that the difference between the
extreme tensions (or normal forces)
depends only upon the weight of the
object.

Discuss the necessity of radius of
gyration. Define it. On what factors does
it depend and it does not depend? Can
you locate some similarity between the
centre of mass and radius of gyration?

o

10.

11.

12.

13.

What can you infer if a uniform ring and
a uniform disc have the same radius of

gyration?
State the conditions under which
the theorems of parallel axes and

perpendicular axes are applicable. State
the respective mathematical expressions.
Derive an expression that relates angular
momentum with the angular velocity of
a rigid body.

Obtain an expression relating the torque
with angular acceleration for a rigid
body.

State and explain the principle of
conservation of angular momentum. Use
a suitable illustration. Do we use it in our
daily life? When?

Discuss  the  interlink  between
translational, rotational and total kinetic
energies of a rigid object that rolls
without slipping.

A rigid object is rolling down an
inclined plane. Derive expressions for
the acceleration along the track and
the speed after falling through a certain
vertical distance.

Somehow, an ant is stuck to the rim of a
bicycle wheel of diameter 1 m. While the
bicycle is on a central stand, the wheel
IS set into rotation and it attains the
frequency of 2 rev/s in 10 seconds, with
uniform angular acceleration. Calculate
(1) Number of revolutions completed by
the ant in these 10 seconds. (ii) Time
taken by it for first complete revolution
and the last complete revolution.
[Ans:10 rev., t., =/10s, t,_, =0.5132s]
Coefficient of static friction between
a coin and a gramophone disc is 0.5.
Radius of the disc is 8 cm. Initially the
centre of the coin is 7 cm away from
the centre of the disc. At what minimum
frequency will it start slipping from

IV



14.

15.

16.

17.

18.

there? By what factor will the answer
change if the coin is almost at the rim?
(use g = > m/s?) |
[Ans: 2.5rev/s, N, =—N/]
Part of a racing track is to be designed
for a curvature of 72 m. We are not
recommending the vehicles to drive
faster than 216 kmph. With what angle
should the road be tilted? By what height
will its outer edge be, with respect to the
inner edge if the track is 10 m wide?

[Ans: 6 =tan™'(5) =78.69°,h=9.8m]
The road in the question 14 above is
constructed as per the requirements. The
coefficient of static friction between the
tyres of a vehicle on this road is 0.8, will
there be any lower speed limit? By how
much can the upper speed limit exceed in
this case?

[Ans: v . =88kmph, no upper limit as
the road is banked for ¢ > 45°]

During a stunt, a cyclist (considered to
be a particle) is undertaking horizontal
circles inside a cylindrical well of
radius 6.05 m. If the necessary friction
coefficient is 0.5, how much minimum
speed should the stunt artist maintain?
Mass of the artist is 50 kg. If she/he
increases the speed by 20%, how much
will the force of friction be?

[Ans: v . =11 m/s, f =mg=500N ]
A pendulum consisting of a massless
string of length 20 cm and a tiny bob
of mass 100 g is set up as a conical
pendulum. Its bob now performs 75 rpm.
Calculate kinetic energy and increase in
the gravitational potential energy of the
bob. (Use 7° =10)

[Ans: cos 0= 0.8, KE. =
A(P.E)=0.04 J]

A motorcyclist (as a particle) is
undergoing vertical circles inside
a sphere of death. The speed of the

0.45 J,

19.

20.

21.

22.

motorcycle varies between 6 m/s and 10
m/s. Calculate diameter of the sphere of
death. How much minimum values are
possible for these two speeds?
[Ans: Diameter = 3.2 m,
(V). =4m/s, (v,) = 4/5m/s]
A metallic ring of mass 1 kg has moment
of inertia 1 kg m? when rotating about
one of its diameters. It is molten and
remoulded into a thin uniform disc of the
same radius. How much will its moment
of inertia be, when rotated about its own
axis.
[Ans: 1 kg m?]
A big dumb-bell is prepared by using a
uniform rod of mass 60 g and length 20
cm. Two identical solid spheres of mass
50 g and radius 10 cm each are at the
two ends of the rod. Calculate moment
of inertia of the dumb-bell when rotated
about an axis passing through its centre
and perpendicular to the length.
[Ans: 24000 g cm?]
A flywheel used to prepare earthenware
pots is set into rotation at 100 rpm. It is
in the form of a disc of mass 10 kg and
radius 0.4 m. A lump of clay (to be taken
equivalent to a particle) of mass 1.6 kg
falls on it and adheres to it at a certain
distance x from the centre. Calculate x if
the wheel now rotates at 80 rpm.

[Ans: X :Lm =0.35m]

J8
Starting from rest, an object rolls down
along an incline that rises by 3 in every
5 (along it). The object gains a speed of

) ] 5
J10 m/s as it travels a distance of 3

m along the incline. What can be the

possible shape/s of the object?
2
[Ans: % =1. Thus, aring or
a hollow cylinder]
Rk
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2. Mechanical Properties of Fluids

C) Can you recall? \

1. How important are fluids in our life?

2. What is atmospheric pressure?

3. Do you feel excess pressure while
swimming under water? Why?

2.1 Introduction:

In XI™ Std. we discussed the behaviour of
solids under the action of a force. Among three
states of matter, i.e., solid, liquid and gas, a
solid nearly maintains its fixed shape and
volume even if a large force is applied to it.
Liquids and gases do not have their own shape
and they take the shape of the containing
vessel. Due to this, liquids and gases flow under
the action of external force. A fluid means a
substance that can flow. Therefore, liquids and
gases, collectively, are called fluids. A fluid
either has no rigidity or its rigidity is very low.

In our daily life, we often experience
the pressure exerted by a fluid at rest and in
motion. Viscosity and surface tension play
an important role in nature. We will try to
understand such properties in this chapter.

2.2 Fluid:

Any substance that can flow is a
fluid. A fluid is a substance that deforms
continually under the action of an external
force. Fluid is a phase of matter that
includes liquids, gases and plasmas.

) Do you know?

Plasma is one of the four fundamental states
of matter. It consists of a gas of ions, free
electrons and neutral atoms.

We shall discuss mechanical properties
of only liquids and gases in this Chapter. The
shear modulus of a fluid is zero. In simpler
words, fluids are substances which cannot
resist any shear force applied to them. Air,
water, flour dough, toothpaste, etc., are some
common examples of fluids. Molten lava is
also a fluid.

A fluid flows under the action of a force
or a pressure gradient. Behaviour of a fluid
in motion is normally complicated. We can
understand fluids by making some simple
assumptions. We introduce the concept of an
ideal fluid to understand its behaviour. An
ideal fluid has the following properties:

1. Itisincompressible: its density is constant.

2. lts flow is irrotational: its flow is smooth,
there are no turbulences in the flow.

3. Itis nonviscous: there is no internal friction
in the flow, i.e., the fluid has no viscosity.
(viscosity is discussed in section 2.6.1)

4. lts flow is steady: its velocity at each point
Is constant in time.

Itis important to understand the difference
between a solid and a fluid. Solids can be
subjected to shear stress (tangential stress) as
shown in Fig. 2.1 and normal stress, as shown

in Fig.2.2.
f
1

A B
Fig. 2.1: Shear stress.
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Fig. 2.2: Normal stress.

Solids oppose the shear stress either by
developing a restoring force, which means that
the deformations are reversible, or they require
a certain initial stress before they deform and
start flowing. (We have studied this behavior
of solids (elastic behaviour) in XI" Std).

Ideal fluids, on the other hand, can only
be subjected to normal, compressive stress
(called pressure). Most fluids offer a very
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weak resistance to deformation. Real fluids
display viscosity and so are capable of being
subjected to low levels of shear stress.

dF- dF

dA

Fig. 2.3: Forces acting on a small surface dA
within a fluid at rest.

The Fig. 2.3 shows a small surface of
area dA at rest within a fluid. The surface does
not accelerate, so the surrounding fluid exerts
equal normal forces dF on both sides of it.
Properties of Fluids:

1. They do not oppose deformation, they get
permanently deformed.

2. They have ability to flow.

3. They have ability to take the shape of the
container.

A fluid exhibits these properties because
it cannot oppose a shear stress when in
static equilibrium.

f—C) Remember this> ~

The termfluid includes both the liquid and gas
phases. It is commonly used, as a synonym
for liquid only, without any reference to gas.
For example, ‘brake fluid” is hydraulic oil
and will not perform its required function if
there is gas in it! This colloquial use of the
term is also common in the fields of medicine
and nutrition, e.g., “take plenty of fluids”.

2.2.1 Fluids at Rest:

The branch of physics which deals
with the properties of fluids at rest is called
hydrostatics. In the next few sections we will
consider some of the properties of fluids at rest.
2.3 Pressure:

Afluid at rest exerts a force on the surface
of contact. The surface may be a wall or the
bottom of an open container of the fluid. The
normal force (F) exerted by a fluid at rest per
unit surface area (A) of contact is called the
pressure (p) Igf the fluid.

- - (1)

Figure 2.4 shows a fluid exerting normal
force on a vertical surface and Fig. 2.5 shows
fluid exerting normal force on a horizontal
surface.

F -—F
A
Fig. 2.4: Fluid exert force on vertical surface.

F
| A

/ ;
A
I
F

Fig. 2.5: Fluid exert force on horizontal surface.

Thus, an object having small weight
can exert high pressure if its weight acts on a
small surface area. For example, a force of
10 N acting on 1 cm? results in a pressure of
10° N m. On the other hand, the same force of
10 N while acting on an area of 1 m?, exerts a
pressure of only 10 N m=,

) Remember this>

1 N weight is about 100 g mass, if
g=10ms=2.

The SI unit of pressure is N/m2. Also,
1 N/m? = 1 Pascal (Pa). The dimension of
pressure is [L*M!T?]. Pressure is a scalar
quantity. Other common units of measuring
pressure of a gas are bar and torr.
1 bar =10° Nm?
1 hectapascal (hPa) = 100 Pa

) Can you tell? N

Why does a knife have a sharp edge,

and a needle has a sharp tip? )

,—C) Use your brain power>ﬁ

A student of mass 50 kg is standing on both
feet. Estimate the pressure exerted by the
student on the Earth. Assume reasonable
value to any other quantity you need. Justify
your assumption. You may use g = 10 m s
By what factor will it change if the student
L lies on back?

J
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r—C) Remember this> ~

The concept of pressure is useful in dealing
with fluids, i.e., liquids and gases. As fluids
do not have definite shape and volume, it
is convenient to use the gquantities pressure
and density rather than force and mass when
studying hydrostatics and hydrodynamics.

2.3.1 Pressure Due to a Liquid Column:
N a
Air
Water
—
. h
=

N J

Fig. 2.6: Pressure due to a liquid column.

A vessel is filled with a liquid. Let us
calculate the pressure exerted by an imaginary
cylinder of cross sectional area A inside the
container. Let the density of the fluid be p, and
the height of the imaginary cylinder be h as
shown in the Fig. 2.6. The liquid column exerts
a force F = mg, which is its weight, on the
bottom of the cylinder. This force acts in the
downward direction. Therefore, the pressure p
exerted by the liquid column on the bottom of

cylinder is,
_F
P=y
_mg
A

Now, m = (volume of cylinder) x (density of
liquid)
= (Ah) x p = Ahp
(4hp)g
A
p=hpg —-(2.2)

Thus, the pressure p due to a liquid of
density p at rest, and at a depth h below the
free surface is hpg.

Note that the pressure dose not depend
on the area of the imaginary cylinder used to
derive the expression.

r—C) Remember this> ~

1. As p = hpg, the pressure exerted by a
fluid at rest is independent of the shape
and size of the container.

2. p = hpg is true for liquids as well as for
gases.

\ & J
Ve

Example 2.1: Two different liquids of |
density p, and p, exert the same pressure at
a certain point. What will be the ratio of the
heights of the respective liquid columns?
Solution: Leth, be the height of the liquid of
density p,. Then the pressure exerted by the
liquid of density p, is p, = h.p.g. Similarly,
let h, be the height of the liquid of density
p,. Then the pressure exerted by the liquid
of density p, is p, = h,p.g.

Both liquids exert the same pressure,
therefore we write,

P, =P, h _p,
~hpg=hpgory ="
Alternate method: 2
For a given value of p = hpg = constant,
as g is constant. So the hight is inversely
proportional to the density of the fluid p. In
this case, since pressure is constant, height
is inversely proportional to density of the

liquid.

Example 2.2: A swimmer is swimming in
a swimming pool at 6 m below the surface
of the water. Calculate the pressure on the
swimmer due to water above. (Density of
water = 1000 kg/m?, g = 9.8 m/s?)
Solution: Given,

h=6m, p=1000 kg/m3, g = 9.8 m/s?
p=hpg =6 x 1000 x 9.8 =5.88 x 10° N/m?
(Which is nearly 6 times the atmospheric

pressure!)
| J

2.3.2 Atmospheric Pressure:

Earth's atmosphere is made up of a fluid,
namely, air. It exerts a downward force due
to its weight. The pressure due to this force
is called atmospheric pressure. Thus, at any
point, the atmospheric pressure is the weight
of a column of air of unit cross section starting
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from that point and extending to the top of the
atmosphere. Clearly, the atmospheric pressure
is highest at the surface of the Earth, i.e., at the
sea level, and decreases as we go above the
surface as the height of the column of air above
decreases. The atmospheric pressure at sea
level is called normal atmospheric pressure.

The density of air in the atmosphere decreases

with increase in height and becomes negligible

beyond a height of about 8 km so that the
height of air column producing atmospheric
pressure at sea level can be taken to be 8 km.

The region where gas pressure is less than
the atmospheric pressure is called vacuum.

Perfect or absolute vacuum is when no matter,

i.e., no atoms or molecules are present.

Usually, vacuum refers to conditions when the

gas pressure is considerably smaller than the

atmospheric pressure.

2.3.3 Absolute Pressure and Gauge Pressure:

Consider a tank filled with water as shown
in Fig. 2.7. Assume an imaginary cylinder of

horizontal base area A and height x - x, = h.

x, and x, being the heights measured from a

reference point, height increasing upwards:

X, > X,. The vertical forces acting on the

cylinder are:

1. Force El acts downwards at the top surface
of the cylinder, and is due to the weight of
the water column above the cylinder.

2. Force E acts upwards at the bottom
surface of the cylinder, and is due to the
water below the cylinder.

3. The gravitational force on the water
enclosed in the cylinder is mg, where m is
the mass of the water in the cylinder. As
the water is in static equilibrium, the forces
on the cylinder are balanced. The balance
of these forces in magnitude is written as,

F,=F+mg ---(2.3)

p,and p, are the pressures at the top and

bottom surfaces of the cylinder respectively
due to the fluid. Using Eq. (2.1) we can write
F,=pA andF,=pA --- (2.4)

Also, the mass m of the water in the cylinder

can be written as,

m = density x volume = pV

5.m = pA(X,-X,) --- (2.5)

Substituting Eq. (2.4) and Eq. (2.5) in Eq. (2.3)
We get,

PA=PA+pAg (x-X,)

p,= P, + pg (X~ X,) - (2.6)

This equation can be used to find the

pressure inside a liquid (as a function of
depth below the liquid surface) and also the
atmospheric pressure (as a function of altitude
or height above the sea level).

\
Air
Water

b

N

Fig. 2.7: Pressure due to an imaginary cylinder

of fluid.

To find the pressure p at a depth h below
the liquid surface, let the top of an imaginary
cylinder be at the surface of the liquid. Let
this level be x,. Let x, be some point at depth h
below the surface as shown in Fig. 2.8. Let p,
be the atmospheric pressure at the surface, i.e.,
at x,. Then, substituting x, =0, p, = p,, X, = -h,
and p, = p in Eq. (2.6) we get,

p = py+ hpg —(27)

The above equation gives the total
pressure, or the absolute pressure p, at a depth
h below the surface of the liquid. The total
pressure p, at the depth h is the sum of:

1. p, the pressure due to the atmosphere,
which acts on the surface of the
liquid, and

2. hpg, the pressure due to the liquid at depth

h. R ~

Air — X,

Water T
h
.

\ J

Fig. 2.8. Pressure at a depth h below the surface
of a liquid.
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In general, the difference between the
absolute pressure and the atmospheric pressure
is called the gauge pressure. Using Eq. (2.7),
gauge pressure at depth h below the liquid
surface can be written as,

p-p,=hpg - (2.8)

Eqg. (2.8) is also applicable to levels above
the liquid surface. It gives the pressure at a
given height above a liquid surface, in terms
of the atmospheric pressure p, (assuming that
the atmospheric density is uniform up to that
height).

To find the atmospheric pressure at a
distance d above the liquid surface as shown
in Fig. 2.9, we substitute x, =d, p, = p, X, =0,
p,=p,and p = p,, in Eq. (2.6) we get,

P=p,-dp,;9 -~ (2.9)

N J

Fig. 2.9: Change of atmospheric pressure
with height.

) Can you tell? 2

The figures show three containers filled
with the same oil. How will the pressures at
the reference line compare?

(a) (b)
2 3.4 Hydrostatic Paradox:

Consider the inter connected vessels
as shown in Fig. 2.10 (a). When a liquid is
poured in any one of the vessels, it is noticed
that the level of liquids in all the vessels is the
same. This observation is somewhat puzzling.
It was called 'hydrostatics paradox' before
the principle of hydrostatics were completely
understood.

One can feel that the pressure of the base
of the vessel C would be more than that at the

base of the vessel B and the liquid from vessel
C would rise into the vessel B. However,
it is never observed. Equation 2.2 tells that
the pressure at a point depends only on the
height of the liquid column above it. It does
not depend on the shape of the vessel. In this
case, height of the liquid column is the same
for all the vessels. Therefore, the pressure of
liquid column in each vessel is the same and
the system is in equilibrium. That means the
liquid in vessel C does not rise in to vessel B.

A B C D

(@)
Fig. 2.10: Hydrostatic paradox.

Consider Fig.2.10 (b). The arrows indicate

the forces exerted against the liquid by the walls
of the vessel. These forces are perpendicular to
walls of the vessel at each point. These forces
can be resolved into vertical and horizontal
components. The vertical components act in
the upward direction. Weight of the liquid in
section B is not balanced and contibutes the
pressure at the base. Thus, it is no longer a

paradox!
2.3.5 Pascal’s Law:
Pascal’s law states that the pressure

applied at any point of an enclosed fluid at
rest is transmitted equally and undiminished to
every point of the fluid and also on the walls of
the container, provided the effect of gravity is

neglected.
( A
Experimental proof of Pascal’s principle.

Consider a vessel with four arms A, B, C,
and D fitted with frictionless, water tight
pistons and filled with incompressible fluid
as shown in the figure given. Let the area of
cross sections of A, B, C, and D be a, 23, 3a,
and a/2 respectively. If a force F is applied
on the piston A, the pressure exerted on the
liquid is p = F/a. Itis observed that the other
three pistons B, C, and D move outward.
In order to keep these three pistons B, C,
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and D in their original positions, forces 2F,
3F, and F/2 respectively are required to be
applied on the pistons. Therefore, pressure
on the pistons B, C, and D is:

3F

2F F
onB, py=—=-

2a a
onC, pc=3—F=£ and

3a a
53 e

+ Po al2 a

I.e. py =p. =P, = p, this indicates that the
pressure applied on piston A is transmitted
equally and undiminished to all parts of the
fluid and the walls of the vessel.

. J

Applications of Pascal’s Law:
1) Hydraulic lift: Hydraulic lift is used to lift a
heavy object using a small force. The working

of this machine is based on Pascal’s law.
F,

bPi=P

)

Fig. 2.11 Hydraulic Lift. =

As shown in Fig. 2.11, a tank containing
a fluid is fitted with two pistons S, and S, . S,
has a smaller area of cross section, A, while
S, has a much larger area of cross section,
A, (A, >> A). If we apply a force F, on the
smaller piston S, in the downward direction it
will generate pressure p = (F./A, ) which will be

transmitted undiminished to the bigger piston
S,. A force F, = pA, will be exerted upwards
on it.

Al

Thus, F, is much larger than F . A heavy
load can be placed on S, and can be lifted up
or moved down by applying a small force on
S,. This is the principle of a hydraulic lift.

- (2.10)

) Observe and discuss

Blow air in to a flat balloon using a cycle
pump. Discuss how Pascal’s principle is
applicable here.

i) Hydraulic brakes: Hydraulic brakes are
used to slow down or stop vehicles in motion.
It is based on the same principle as that of a
hydraulic lift.

Figure 2.12 shows schematic diagram
of a hydraulic brake system. By pressing the
brake pedal, the piston of the master cylinder
IS pushed in forward direction. As a result,
the piston in the slave cylinder which has a
much larger area of cross section as compared
to that of the master cylinder, also moves in
forward direction so as to maintain the volume
of the oil constant. The slave piston pushes the
friction pads against the rotating disc, which
is connected to the wheel. Thus, causing a
moving vehicle to slow down or stop.

Hydraulic
4, tubes \

E E
Slave Slave
cylinders cylinders

F,
) Master Brake pedal

Brul:le fluids cylinders

E
Slave Slave
cylinders cylinders

Fig. 2.12 Hydraulic brake system (schematic).
The master cylinder has a smaller area of
cross section A, compared to the area A, of the
slave cylinder. By applying a small force F,
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to the master cylinder, we generate pressure

p = (F/A). This pressure is transmitted

undiminished throughout the system. The force

F, on slave cylinder is then,
F,=p4, :%XAz =k (%}

This is similar to the principle used in
hydraulic lift. Since area A, is greater than A,
F, is also greater than F_. Thus, a small force
applied on the brake pedal gets converted into
large force and slows down or stops a moving
vehicle.

[ Example 2.3: A hydraulic brake system
of a car of mass 1000 kg having speed of
50 km/h, has a cylindrical piston of radius
of 0.5 cm. The slave cylinder has a radius
of 2.5 cm. If a constant force of 100 N is
applied on the brake what distance the car
will travel before coming to stop?
Solution: Given,

F,=100N, A == (0.5x10%)* m?,
A, =7 (25x10%) m*F,=?
By Pascal’s Principle,
5 _L
A2 - Al
100x 7(2.5%107%)
F,= 242
7(0.5x1072)
Acceleration of the car =

a = F, /m = 2500/1000 = 2.5 m/s?. Using
Newton's equation of motion,

~

=2500N

v2 = u? -2as where final velocity v = 0,
u =50 km/h

(50><1000)2 1
S= X
3600 (2x2.5)

=38.58m

J

2.3.6 Measurement of Pressure:

Instruments used to measure pressure are
called pressure meters or pressure gauges or
vacuum gauges. Below we will describe two
instruments which are commonly used to
measure pressure.

Caution:

Use of mercury is not advised in a
laboratory because mercury vapours are
hazardous for life and for environment.

1) Mercury Barometer: An instrument that
measures atmospheric pressure is called a
barometer. One of the first barometers was by
Italian scientist Torricelli. The barometer is
in the form of a glass tube completely filled
with mercury and placed upside down in a
small dish containing mercury. Its schematic
diagram is shown in Fig. 2.13.
™\

<«+——— Torricelli’s vacuum
AT
h Fig. 2.13: Mercury
l barometer.
[
C B C

1. A glass tube of about 1 meter length and
a diameter of about 1 cm is filled with
mercury up to its brim. It is then quickly
inverted into a small dish containing
mercury. The level of mercury in the glass
tube lowers as some mercury spills in the
dish. A gap is created between the surface
of mercury in the glass tube and the closed
end of the glass tube. The gap does not
contain any air and it is called Torricelli’s
vacuum. It dose contain some mercury
vapors.

2. Thus, the pressure at the upper end of the
mercury column inside the tube is zero, i.e.
pressure at point such as A is p,= zero.

3. Let us consider a point C on the mercury
surface in the dish and another point B
inside the tube at the same horizontal level
as that of the point C.

4. The pressure at C is equal to the
atmospheric pressure p,because it is open
to atmosphere. As points B and C are at the
same horizontal level, the pressure at B is
also equal to the atmospheric pressure p,
1.e. p;=p,.

5. Suppose the point B is at a depth h below
the point A and p is the density of mercury
then,

P.=P, +hpg - (2.11)
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p, = 0 (there is vacuum above point A) and
pg = P, therefore, p, = hpg, where his the length
of mercury column in the mercury barometer.

N
)Remember thIS/ ~

The atmospheric pressure is generally
expressed as the length of mercury column
in a mercury barometer.

P, = 76 cm of Hg = 760 mm of Hg

Another unit for measuring pressure is
torr. One torr = 1 mm of Hg

) Can you tell? 2

What will be the normal atmospheric
_pressure in bar and also in torr?

J
i) Open tube manometer: A manometer

consists of a U — shaped tube partly filled with
a low density liquid such as water or kerosene.
This helps in having a larger level difference
between the level of liquid in the two arms of
the manometer. Figure 2.14 shows an open
tube manometer. One arm of the manometer
is open to the atmosphere and the other is
connected to the container D of which the
pressure p is to be measured.

-1

C

Fig. 2.14 Open tube
manometer.

The pressure at point A is atmospheric
pressure p, because this arm is open to
atmosphere. To find the pressure at point C,
which is exposed to the pressure of the gas
in the container, we consider a point B in the
open arm of the manometer at the same level
as point C. The pressure at the points B and C
is the same, i.e.,

pc = pB T (212)
The pressure at point B is,
Ps =P, tNpg —-(2.13)

where, p is the density of the liquid in the
manometer, h is the height of the liquid column
above point B, and g is the acceleration due
to gravity. According to Pascal’s principle,

pressure at C is the same as at D, i.e., inside
the chamber. Therefore, the pressure p in the
container is,

P =P
Using Eq. (2.12) and Eq. (2.13) we can write,
p=p,+ hpg ---(2.14)

As the manometer measures the gauge
pressure of the gas in the container D, we can
write the gauge pressure in the container D as

p-p,=hpg

) Can you recall? N

1. You must have blown soap bubbles in
your childhood. What is their shape?

2. Why does a greased razor blade float
on the surface of water?

3. Why can a water spider walk
comfortably on the surface of still
water?

4. Why are free liquid drops and bubbles
always spherical in shape?

& J

2.4 Surface Tension:

A liquid at rest shows a very interesting
property called surface tension. We have
seen that water spider walks on the surface
of steady water, greased needle floats on the
steady surface of water, rain drops and soap
bubbles always take spherical shape, etc.
All these phenomena arise due to surface
tension. Surface tension is one of the important

properties of liquids.

) Do you know? ~

1. When we write on paper, the ink sticks
to the paper.

2. When teacher writes on a board, chalk
particles stick to the board.

3. Mercury in a glass container does not
wet its surface, while water in a glass

container wets it.
- J

2.4.1 Molecular Theory of Surface Tension:

All the above observations can be
explained on the basis of different types of
forces coming into play in all these situations.
We will try to understand the effect of these
forces and their relation to the surface tension
in liquids.
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To understand surface tension, we need
to know some terms in molecular theory
that explain the behaviour of liquids at their
surface.

a) Intermolecular force: Matter is made up

of molecules. Any two molecules attract each

other. This force between molecules is called
intermolecular force. There are two types of
intermolecular forces - i) Cohesive force and

ii) Adhesive force.

i) Cohesive force: The force of attraction
between the molecules of the same
substance is called cohesive force or
force of cohesion. The force of attraction
between two air molecules or that between
two water molecules is a cohesive force.
Cohesive force is strongest in solids and
weakest in gases. This is the reason why
solids have a definite shape and gases do
not. Small droplets of liquid coalesce into
one and form a drop due to this force.

i) Adhesive force: The force of attraction
between the molecules of different
substances is called adhesive force or
force of adhesion. The force of attraction
between glass and water molecule is a
force of adhesion.

b) Range of molecular force: The maximum

distance from a molecule up to which the

molecular force is effective is called the range
of molecular force. Intermolecular forces
are effective up to a distance of the order of
few nanometer (10°m) in solids and liquids.
Therefore, they are short range forces.
c) Sphere of influence: An imaginary sphere
with a molecule at its center and radius equal
to the molecular range is called the sphere of
influence of the molecule. The spheres around

molecules A, B or C are shown in Fig. 2.15 (a)

and (b). The intermolecular force is effective

only within the sphere of influence.

d) Surface film: The surface layer of a

liquid with thickness equal to the range of

intermolecular force is called the surface film.

This is the layer shown between XY and X"Y’

in Fig. 2.15 (b).

4

B~

. B

(b)
(a) sphere of influence and
(b) surface film.

(e) Free surface of a liquid: It is the surface
of a fluid which does not experience any shear
stress. For example, the interface between
liquid water and the air above. In Fig. 2.15 (b),
XY is the free surface of the liquid.

f—C) Remember this> ~

While studying pressure, we considered both
liquids and gases. But as gases do not have
a free surface, they do not exhibit surface
\tension.

Fig. 2.15:

J

(F) Surface tension on the basis of molecular
theory: As shown in Fig. 2.15 (b), XY is the
free surface of liquid and X'Y’ is the inner
layer parallel to XY at distance equal to the
range of molecular force. Hence, the section
XX'-Y'Y near the surface of the liquid acts as
the surface film. Consider three molecules A,
B, and C such that molecule A is deep inside
the liquid, molecule B within surface film and
molecule C on the surface of the liquid.

As molecule Ais deep inside the liquid, its
sphere of influence is also completely inside
the liquid. As a result, molecule A is acted
upon by equal cohesive forces in all directions.
Thus, the net cohesive force acting on molecule
Ais zero.

Molecule B lies within the surface layer
and below the free surface of the liquid. A
larger part of its sphere of influence is inside
the liquid and a smaller part is in air. Due to
this, a strong downward cohesive force acts on
the liquid molecule. The adhesive force acting
on molecule B due to air molecules above it
and within its sphere of influence is weak. It
points upwards. As a result, the molecule B
gets attracted inside the liquid.
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The same holds for molecule C which lies
exactly on the free surface of the liquid. Half
of the sphere of influence is in air and half in
the liquid. The number of air molecules within
the sphere of influence of the molecule C,
above the free surface of the liquid is much less
than the number of liquid molecules within the
sphere of influence that lies within the liquid.
This is because, the density of air is less than
that of a liquid. The adhesive force trying to
pull the molecule above the liquid surface is
much weaker than the cohesive force that tries
to pull the molecule inside the liquid surface.
As a result, the molecule C also gets attracted
inside the liquid.

Thus, all molecules in the surface film
are acted upon by an unbalanced net cohesive
force directed into the liquid. Therefore, the
molecules in the surface film are pulled inside
the liquid. This minimizes the total number of
molecules in the surface film. As a result, the
surface film remains under tension. The surface
film of a liquid behaves like a stretched elastic
membrane. This tension is known as surface
tension. The force due to surface tension acts
tangential to the free surface of a liquid.

2.4.2 Surface Tension and Surface Energy:
a) Surface Tension: As seen previously, the
free surface of a liquid in a container acts as
a stretched membrane and all molecules on
the surface film experience a stretching force.
Imagine a line PQ of length L drawn tangential
to the free surface of the liquid, as shown in
Fig. 2.16.

Fig. 2.16: Force of surface tension.

All the molecules on this line experience
equal and opposite forces tangential to surface
as if they are tearing the surface apart due
to the cohesive forces of molecules lying on
either side.

This force per unit length is the surface
tension. Surface tension T is defined as, the
tangential force acting per unit length on both
sides of an imaginary line drawn on the free

surface of liquid.

r_r - (2.15)

L
Sl unit of surface tension is N/m. Its Dimension
are, [L°M*T~].

,—C) Use your brain power>ﬁ

Prove that, equivalent S.1. unit of surface

tension is J/m?2.
\§ J

(Example 2.4: A beaker of radius 10 cm |
is filled with water. Calculate the force
of surface tension on any diametrical line
on its surface. Surface tension of water is
0.075 N/m.

Solution: Given,
L=2x10=20cm=0.2m
T =0.075 N/m

We have,

T==
L

~F=TL=0.075x0.2=0.015
=15x%x 102N

& J

Table 2.1 — Surface tension of some liquids at 20°C.

Sr. [ Liquid S.T. S.T.
No. (N/m) [ (dyne/cm)
1 Water 0.0727 72.7
2 | Mercury | 0.4355 4355
3 Soap 0.025 25
solution
4 | Glycerin | 0.0632 63.2

b) Surface Energy: We have seen that a
molecule inside the volume of a liquid (like
molecule A in Fig 2.15) experiences more
cohesive force than a molecule like molecules
B and C in the surface film of the liquid in
that figure. Thus, work has to be done to bring
any molecule from inside the liquid into the
surface film. Clearly, the surface molecules
possess extra potential energy as compared
to the molecules inside the liquid. The extra

I



energy of the molecules in the surface layer
is called the surface energy of the liquid. As
any system always tries to attain a state of
minimum potential energy, the liquid tries to
reduce the area of its surface film. Energy has
to be spent in order to increase the surface area
of a liquid.

) Remember this> ~

1) Molecules on the liquid surface
experience net inward pull. In spite of
this if they remain at the surface, they
possess higher potential energy. As a
universal property, any system tries to
minimize its potential energy. Hence
liquid surface tries to minimize its
surface area.

2) When a number of droplets coalesce
and form a drop, there is reduction
in the total surface area. In this case,
energy is released to the surrounding.

\ & J

c) Relation between the surface energy and
surface tension: Consider a rectangular frame
of wire P'PSS'. It is fitted with a movable arm
QR as shown in Fig. 2.17. This frame is dipped
in a soap solution and then taken out. A film
of soap solution will be formed within the
boundaries PQRS of the frame.

S
Fig. 2.17: Surface energy of a liquid

Each arm of the frame experiences an
inward force due to the film. Under the action
of this force, the movable arm QR moves
towards side PS so as to decrease the area
of the film. If the length of QR is L, then this
inward force F acting on it is given by

F=(T)x (2L) --- (2.16)

Since the film has two surfaces, the upper
surface and the lower surface, the total length
over which surface tension acts on QR is
2L. Imagine an external force F’ (equal and

opposite to F) applied isothermally (gradually
and at constant temperature), to the arm
QR, so that it pulls the arm away and tries
to increase the surface area of the film. The
arm QR moves to Q'R’ through a distance dx.
Therefore, the work done against F, the force
due to surface tension, is given by

dw = F'dx
Using Eq. (2.16),
dw =T (2Ldx)

But, 2Ldx = dA, increase in area of the two
surfaces of the film. Therefore, dw = T(dA).

This work done in stretching the film is
stored in the area dA of the film as its potential
energy. This energy is called surface energy.

.. Surface energy =T (dA) --(2.17)

Thus, surface tension is also equal to the
surface energy per unit area.

( )

Example 2.5: Calculate the work done
in blowing a soap bubble to a radius of
1 cm. The surface tension of soap solution is
2.5 x 102 N/m.
Solution: Given
T=25x10%2N/m
Initial radius of bubble = 0 cm
Final radius of bubble,r=1cm =0.01 m
Initial surface area of soap bubble =0
(A soap bubble has two surfaces, outer
surface and inner surface).
Final surface area of soap bubble is,
A=2x (4nr?) = 8nr?
~.change inarea =dA=A -0 =8nr?
= 0.00251 m?

. work done =T x dA

=2.5x10?x0.251 x 1072

=6.275x 10°]

)Try this D

Take a ring of about 5 cm in diameter. Tie
a thin thread along the diameter of the ring.
Keep the thread slightly loose. Dip the ring
in a soap solution and take it out. A soap
film is formed on either side of thread.
Break the film on any one side of the thread.
. Discuss the result.

J
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) Remember this> ~

The work done, under isothermal condition,

against the force of surface tension to

change the surface area of a liquid is stored
_ as surface energy of liquid.

J

2.4.3 Angle of Contact:

When a liquid surface comes in contact
with a solid surface, it forms a meniscus,
which can be either convex (mercury-glass) or
concave (water glass), as shown in Fig. 2.18.
The angle of contact, 0, between a liquid and
a solid surface is defined as the angle between
the tangents drawn to the free surface of the
liquid and surface of the solid at the point of
contact, measured within the liquid.

)

a

Fig. 2.18 (a): Concave meniscus due to liquids
which partially wet a solid surface.

When the angle of contact is acute, the
liquid forms a concave meniscus Fig. 2.18(a)
at the point of contact. When the angle of
contact is obtuse, it forms a convex meniscus
Fig.2.18(b). Forexample, water-glassinterface
forms a concave meniscus and mercury-glass

interface forms a convex meniscus.
7\

A

Fig. 2.18 (b): Convex meniscus due to liquids
which do not wet a solid surface.

This difference between the shapes of
menisci is due to the net effect of the cohesive
forces between liquid molecules and adhesive
forces between liquid and solid molecules as
discussed below.

/—C) Do you know? ~

» when we observe the level of water in a
capillary, we note down the level of the
tangent to the meniscus inside the water.

» When we observe the level of mercury
in a capillary we note down the level of
the tangent to the meniscus above the

mercury column.
& J

a) Shape of meniscus:
i) Concave meniscus - acute angle of contact:

Sphere of influence
P Air
R e b
Solid Liquid

Fig. 2.19 (a): Acute angle of contact.

Figure 2.19 (a) shows the acute angle of
contact between a liquid surface (e.g., kerosene
in a glass bottle). Consider a molecule such as
A on the surface of the liquid near the wall of
the container. The molecule experiences both
cohesive aswell as adhesive forces. In this case,
since the wall is vertical, the net adhesive force
(AP) acting on the molecule A is horizontal,
Net cohesive force ( AC ) acting on molecule is
directed at nearly 45° to either of the surfaces.
Magnitude of adhesive force is so large that
the net force (4R ) is directed inside the solid.

For equilibrium or stability of a liquid
surface, the net force (AR) acting on the
molecule Amust be normal to the liquid surface
at all points. For the resultant force AR to
be normal to the tangent, the liquid near the
wall should pile up against the solid boundary
so that the tangent AT to the liquid surface
is perpendicular to AR. Thus, this makes the
meniscus concave. Obviously, such liquid
wets that solid surface.

i) Convex meniscus - obtuse angle of
contact:

Figure 2.19 (b) shows the obtuse angle
of contact between a liquid and a solid
(e.g., mercury in a glass bottle). Consider a
molecule such as A on the surface of the liquid

e B



near the wall of the container. The molecule
experiences both cohesive as well as adhesive
forces. In this case also, the net adhesive force
(4P) acting on the molecule A is horizontal
since the wall is vertical. Magnitude of
cohesive force is so large that the net force
(AR) is directed inside the liquid.

Sphere of inﬂ\uence T
N Air
A
P <—‘€ 0
C
R
Solid Liquid

Fig. 2.19 (b): Obtuse angle of contact.

For equilibrium or stability of a liquid
surface, the net force (4R) acting on all
molecules similar to molecule A must be
normal to the liquid surface at all points. The
liquid near the wall should, therefore, creep
inside against the solid boundary. This makes
the meniscus convex so that its tangent AT is
normal to AR. Obviously, such liquid does not
wet that solid surface.

iii) Zero angle of contact :

Sphere of influence
P
R A Air
Liquid
6=0 T .
Solid

Fig. 2.19 (c): Angle of contact equal to zero.

Figure 2.19 (c) shows the angle of
contact between a liquid (e.g. highly pure
water) which completely wets a solid
(e.g. clean glass) surface. The angle
of contact in this case is almost zero (i.e.,
06— 0°). In this case, the liquid molecules near
the contact region, are so less in number that
the cohesive force is negligible, i.e., 4C =0
and the net adhesive force itself is the resultant
force, i.e., AP =AR. Therefore, the tangent
AT s along the wall within the liquid and the
angle of contact is zero.

iv) Angle of contact 90° and conditions for
convexity and concavity:

Sphere of
influence

PR

Y

R C

Fig. 2.19 (d): Acute angle equal to 90°

Consider a hypothetical liquid having
angle of contact 90° with a given solid
container, as shown in the Fig. 2.19 (d). In this
case, the net cohesive force AC is exactly at
45° with either of the surfaces and the resultant
force AR is exactly vertical (along the solid
surface).

For this to occur, ap=A¢ where, AR is
J2

the magnitude of the net force. From this we
can write the conditions for acute and obtuse
angles of contact:

— AC
For acute angle of contact, 4° >f’ and for
AC

-

obtuse angle of contact, 4p <

) Can you tell? }

How does a water proofing agent work?

b) Shape of liquid drops on a solid surface:
When a small amount of a liquid is
dropped on a plane solid surface, the liquid
will either spread on the surface or will form
droplets on the surface. Which phenomenon
will occur depends on the surface tension of
the liquid and the angle of contact between
the liquid and the solid surface. The surface
tension between the liquid and air as well as
that between solid and air will also have to be
taken in to account.
Let @ be the angle of contact for the given
solid-liquid pair.
T, = Force due to surface tension at the liquid-
solid interface,
T, = Force due to surface tension at the air-
solid interface,

IV



T, = Force due to surface tension at the air-
liquid interface.

As the force due to surface tension is
tangential to the surfaces in contact, directions
of T,, T, and T, are as shown in the Fig. 2.20.
For equilibrium of the drop,

L (218)

T, =T, +T,cos0 , cosO :TZT;
3
From this equation we get the following cases:
1) IfT,>T and(T,-T,)<T,cos@ is positive
and the angle of contact 0 is acute as
shown in Fig. 2.20 (a).

Solid

Fig. 2.20 (a): Acute angle.

2) HT,<T and (T, -T,) < T, cosO is
negative, and the angle of contact 6 is
obtuse z%s shown in Fig. 2.20(b).

Air
\€E>—Liquid

T, T,
Solid

Fig. 2.20 (b): Obtuse angle.

3) If(T,-T)=T,coso =1and 0 is nearly
equal to zero.

4) If(T,-T)>T,orT,> (T, +T,),cos6>1
which is impossible. The liquid spreads
over the solid surface and drop will not be
formed.

c) Factors affecting the angle of contact:

The value of the angle of contact depends on

the following factors,

i) The nature of the liquid and the solid in
contact.

i) Impurity : Impurities present in the liquid
change the angle of contact.

iii) Temperature of the liquid : Any increase
in the temperature of a liquid decreases its
angle of contact. For a given solid-liquid
surface, the angle of contact is constant at
a given temperature.

Table 2.2 — Angle of contact for pair of
liquid - solid in contact.

Sr. | Liquid - solid in contact | Angle of
No. contact
1 | Pure water and clean glass 0°

2 | Chloroform with clean e

glass
3 | Organic liquids with clean 0°
glass
4 | Ether with clean glass 16°
5 | Kerosene with clean glass 26°
6 | Water with paraffin 107°
7 | Mercury with clean glass 140°

2.4.4 Effect of impurity and temperature on

surface tension:

a) Effect of impurities:

i)  When soluble substance such as common
salt (i.e., sodium chloride) is dissolved
in water, the surface tension of water
increases.

i) When a sparingly soluble substance such
as phenol or a detergent is mixed with
water, surface tension of water decreases.
For example, a detergent powder is mixed
with water to wash clothes. Due to this,
the surface tension of water decreases and
water makes good contact with the fabric
and is able to remove tough stains.

iii) When insoluble impurity is added
into water, surface tension of water
decreases. When impurity gets added
to any liquid, the cohesive force of that
liquid decreases which affects the angle
of contact and hence the shape of the
meniscus. If mercury gathers dust then
its surface tension is reduced. It does not
form spherical droplets unless the dust is
completely removed.

b) Effect of temperature: In most liquids,
as temperature increases surface tension
decreases. For example, it is suggested that
new cotton fabric should be washed in cold
water. In this case, water does not make good
contact with the fabric due to its higher surface
tension. The fabric does not lose its colour
because of this.
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Hot water is used to remove tough stains
on fabric because of its lower surface tension.

In the case of molten copper or molten
cadmium, the surface tension increases with
increase in its temperature.

The surface tension of a liquid becomes
zero at critical temperature.

2.4.5 Excess pressure across the free surface
of a liquid:

Every molecule on a liquid surface
experiences forces due to surface tension
which are tangential to the liquid surface at
rest. The direction of the resultant force of
surface tension acting on a molecule on the
liquid surface depends upon the shape of that
liquid surface. This force also contributes in
deciding the pressure at a point just below the
surface of a liquid.

Figures 2.21 (a), (b) and (c) show surfaces
of three liquids with different shapes and their
menisci. Let /4 be the downward force due to
the atmospheric pressure. All the three figures
show two molecules A and B. The molecule A
is just above, and the molecule B is just below
it (inside the liquid). Level difference between
A and B is almost zero, so that it does not
contribute anything to the pressure difference.
In all the three figures, the pressure at the point
A is the atmospheric pressure p.

a) Plane liquid surface:

Figure 2.21 (a) shows planar free surface
of the liquid. In this case, the resultant force
due to surface tension, /7 on the molecule at B
is zero. The force f, itself decides the pressure
and the pressure at A and B is the same.

AR
~—> Py —=<
N

Fig. 2.21 (a): Plane surface.
b) Convex liquid surface:

Surface of the liquid in the Fig.2.21 (b)
is upper convex. (Convex, when seen from
above). In this case, the resultant force due
to surface tension, /> on the molecule at B
is vertically downwards and adds up to the

Fig. 2.21 (b) : Convex surface.

downward force /4. This develops greater
pressure at point B, which is inside the liquid
and on the concave side of the meniscus. Thus,
the pressure on the concave side i.e., inside the
liquid is greater than that on the convex side
I.e., outside the liquid.
c¢) Concave liquid surface:

o

ifT

Fig. 2.21 (c): Concave Surface.
Surface of the liquid in the Fig. 2.21 (c)

IS upper concave (concave, when seen from
above). In this case, the force due to surface
tension /7, on the molecule at B is vertically
upwards. The force f, due to atmospheric
pressure acts downwords. Forces ./, and /7
thus, act in opposite direction. Therefore,
the net downward force responsible for the
pressure at B is less than /. This develops a
lesser pressure at point B, which is inside the
liquid and on the convex side of the meniscus.
Thus, the pressure on the concave side i.e.,
outside the liquid, is greater than that on the
convex side, i.e., inside the liquid.

2.4.6 Explanation of formation of drops and
bubbles:

Liquid drops and small bubbles are
spherical in shape because the forces of surface
tension dominate the gravitational force.
These force always try to minimize the surface
area of the liquid. A bubble or drop does not
collapse because the resultant of the external
pressure and the force of surface tension is
smaller than the pressure inside a bubble or
inside a liquid drop.
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Consider a spherical drop as shown in
Fig. 2.22. Let p, be the pressure inside the drop
and p, be the pressure out side it. As the drop is
spherical in shape, the pressure, p,, inside the
drop is greater than p,, the pressure outside.
Therefore, the excess pressure inside the drop

IS p;- P,-

e m——
i ~~

Fig. 2.22. Excess pressure inside a liquid drop.
Let the radius of the drop increase from

r to r + Ar, where Ar is very small, so that
the pressure inside the drop remains almost
constant.
Let the initial surface area of the drop be
A, = 4nr?, and the final surface area of the
drop be A, = 4r (r+Ar)>
S A, = 4n(r? + 2rAr + Ar?)
~A, = 4nr? + 8nrAr + 4nAr?
As Ar is very small, Ar2 can be neglected,
“ A, =4nr? + 8rrAr
Thus, increase in the surface area of the drop is
dA=A,-A =8nrAr --- (2.19)
Work done in increasing the surface area
by dA is stored as excess surface energy.
~.dW =TdA=T (8xnrAr) --- (2.20)
This work done is also equal to the product
of the force F which causes increase in the area
of the bubble and the displacement Ar which is
the increase in the radius of the bubble.

< dW = FAr --(2.21)
The excess force is given by,
(Excess pressure) x (Surface area)
F=(p,—p,) 4nr? ---(2.22)

Equating Eq. (2.20) and Eq. (2.21), we get,
T(8nrAr) = (p, - p,) 4nr?Ar
2T
(o =p)= - - (2.23)
This equation gives the excess pressure
inside a drop. This is called Laplace’s law of a
spherical membrane.
In case of a soap bubble there are two
free surfaces in contact with air, the inner

surface and the outer surface. For a bubble,

Eqg. (2.19) chargesto dA = 2(8nrAr). Hence, total

increase in the surface area of a soap bubble,

while increasing its radius by Ar, is 2(8nrAr)

The work done by this excess pressure is
dW = (p, — p,) 4nr?Ar = T(16mrAr)

AT
so(p-py) = Sy --- (2.24)
) Remember this> ~

The  gravitational force acting on a
molecule, which is its weight, is also one
of the forces acting within the sphere of
influence near the contact region. However,
within the sphere of influence, the cohesive
and adhesive forces are so strong that the
gravitational force can be neglected in the
| above explanation.

(Brain teaser:

1. Can you suggest any method to measure
the surface tension of a soap solution?
Will this method have any commercial
application?

2. What happens to surface tension under
different gravity (e.g. Space station or

lunar surface)? )

Example 2.6: What should be the diameter\
of a water drop so that the excess pressure
inside it is 80 N/m?? (Surface tension of
water = 7.27 x 102 N/m)

Solution: Given

p,—p, = 80 N/m?
T=7.27 x 102 N/m
We have, oT
(P, -p,) = o
&
. 2T _2x7.27x107 oo oa
p,—D, 80

S.d=2r=3.6 mm
|\

2.4.7 Capillary Action:

A tube having a very fine bore (~ 1 mm)
and open at both ends is called a capillary
tube. If one end of a capillary tube is dipped in
a liquid which partially or completely wets the
surface of the capillary (like water in glass)
the level of liquid in the capillary rises. On the
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other hand, if the capillary tube is dipped in
a liquid which does not wet its surface (like
mercury in glass) the level of liquid in the
capillary drops.

The phenomenon of rise or fall of a liquid
inside a capillary tube when it is dipped in the
liquid is called capillarity. Capillarity is in
action when,

* Qil rises up the wick of a lamp.

* Cloth rag sucks water.

o Water rises up the crevices in rocks.

e Sap and water rise up to the top most
leaves in a tree.

» Blotting paper absorbs ink.

When a capillary is dipped in a liquid,
two effects can be observed, a) The liquid
level can rise in the capillary (water in a glass
capillary), or b) The liquid level can fall in the
capillary (mercury in glass capillary). Here we
discuss a qualitative argument to explain the
capillary fall.

a) Capillary fall:

Consider a capillary tube dipped in a
liquid which does not wet the surface, for
example, in mercury. The shape of mercury
meniscus in the capillary is upper convex.
Consider the points A, B, C, and D such that,
(see Fig. 2.23 (a)).

i) Point A is just above the convex surface
and inside the capillary.

i) Point B is just below the convex surface
inside the capillary.

iii) Point C is just above the plane surface
outside the capillary.

iv) Point D is just below the plane surface
and outside the capillary, and below the

point C.

Fig. 2.23 (a) : Capillary in mercury before drop in level.

Let p,, P, P and p, be the values of
the pressures at the points A, B, C, and D
respectively. As discussed previously, the
pressure on the concave side is always greater

than that on the convex side.

S P> P,
As the points Aand C are at the same level, the
pressure at both these points is the same, and it
is the atmospheric pressure.

5P = P --- (2.25)
Between the points C and D, the surface is
plane.

pc = pD: pA T (226)
~.pg > Py, But the points B and D are at the
same horizontal level. Thus, in order to
maintain the same pressure, the mercury in the
capillary rushes out of the capillary. Because
of this, there is a drop in the level of mercury
inside the capillary as shown in Fig. 2.23 (b).

¢ e

b s

Fig. 2.23 (b): Capillary in mercury, drop in level.
b) Capillary rise:
Refer to Fig. 2.24 (a) and Fig. 2.24 (b) and
explain the rise of a liquid inside a capillary.

Fig. 2.24 (a): Capillary just immersed in water.

|
< fal}
DI B

Fig. 2.24 (b): Capillary in water after rise in level.
Expression for capillary rise or fall:

Method (I): Using pressure difference

The pressure due to the liquid (water)
column of height h must be equal to the
pressure difference 2T/R due to the concavity.

2T

S hpg= —

- - (2.27)
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where, p is the density of the liquid and g is
acceleration due to gravity.

Let r be the radius of the capillary tube
and @ be the angle of contact of the liquid as

shown in Fig. 2.25 (a).
r

R

0 Fig. 2.25 (a): Forces acting at
the point of contact.

Then radius of curvature R of the meniscus
isgiven by R=

cosf

2Tcos0
~hpg =

_ 2Tcos0O

reg

The above equation gives the expression
for capillary rise (or fall) for a liquid. Narrower
the tube, the greater is the height to which the
liquid rises (or falls).

If the capillary tube is held vertical in
a liquid that has a convex meniscus, then
the angle of contact 6 is obtuse. Therefore,
cosO is negative and so is h. This means
that the liquid will suffer capillary fall or
depression.

b) (Method I1): Using forces:

Rise of water inside a capilary is against
gravity. Hence, weight of the liquid column
must be equal and opposite to the proper
component of force due to surface tension at
the point of contact.

The length of liquid in contact inside the

/
¥ Capillary
wall
Fig 2.25 (b): Forces acting on liquid inside a capillary.
capillary is the circumference 2zr . Thus, the
force due to surface tension is given by,
f. = (surface tension) x (length in contact)
=T x2nr
Direction of this force is along the tangent,
as shown in the Fig. 2.25 (b).
Vertical component of this force is
(f;), =Tx2nrxcos6

o h - (2.28)

- (2.29)

Ignoring the liquid in the concave
meniscus, the volume of the liquid in the
capillary rise is V' = 7r%h.

..Mass of the liquid in the capillary rise,

m=mnr’hp
.. Weight of the liquid in the capillary (rise or
fall), w=nr’hpg --- (2.30)
This must be equal and opposite to the vertical
component of the force due to surface tension.
Thus, equating right sides of equations (2.29)
and (2.30), we get,
nr*hpg =T x27rx cos O

_ 2Tcos0

rpg
In terms of capillary rise, the expression
for surface tension is,
rhpg

T = —
2cos0 (2.31)

The same expression is also valid for

capillary fall discussed earlier.
( )

Example 2.7: A capillary tube of radius
5 x 10*m is immersed in a beaker filled
with mercury. The mercury level inside the
tube is found to be 8 x 10-*m below the level
of reservoir. Determine the angle of contact
between mercury and glass. Surface tension
of mercury is 0.465 N/m and its density is
13.6 x 10° kg/m?. (g = 9.8 m/s?)
Solution: Given,

r=5x10*m

h=—-8x10°m

T =0.465 N/m

g =9.8 m/s?

p =13.6 x 10° kg/m3

we have,
T = hrpg

~ 2cos0
.0.465
_ —8x107 x5x107*x13.6x10°x9.8
- 2cosf
—40%9.8x13.6x10°*
2x0.465
..—cosO =0.5732
-.cos(m—-0) =0.5732
.. 180°-6 =55°02’
.0 =124°58

_ ) y,

~h

C.cosf =

~f~'~~



,—C) Do you know?

Einstein's  first ever  published
scientific article deals with capillary
action? Published in German in 1901,
it was entitled Folegerungen aus den
capillaritatserscheinungen  (conclusions
drawn from the phenomena of capillarity). )

|
2.5 Fluids in Motion:

We come across moving fluids in our day
to day life. The flow of water through our taps,
the flow of cooking gas through tubes, or the
flow of water through a river or a canal can
be understood using the concepts developed in
this section.

The branch of Physics which deals with
the study of properties of fluids in motion is
called hydrodynamics. As the study of motion
of real fluid is very complicated, we shall limit
our study to the motion of an ideal fluid. We
have discussed an ideal fluid in the beginning
of this Chapter. Study of a fluid in motion is
very important.

Consider Fig. 2.26 which shows a pipe
whose direction and cross sectional area
change arbitrarily. The direction of flow of the
fluid in pipe is as shown. We assume an ideal
fluid to flow through the pipe. We define a few
terms used to describe flow of a fluid.

Steady flow: Measurable property, such as
pressure or velocity of the fluid at a given
point is constant over time.

Flow line

Area A

Flow Tube
Fig. 2.26: Flow lines and flow tube.

Flow line: Itis the path of an individual particle
in a moving fluid as shown in Fig. 2.26.
Streamline: It is a curve whose tangent at
any point in the flow is in the direction of the
velocity of the flow at that point. Streamlines
and flow lines are identical for a steady flow.
Flow tube: It is an imaginary bundle of flow
lines bound by an imaginary wall. For a steady
flow, the fluid cannot cross the walls of a flow
tube. Fluids in adjacent flow tubes cannot mix.
Laminar flow/Streamline flow: It is a steady
flow in which adjacent layers of a fluid
move smoothly over each other as shown in
Fig. 2.27 (a). A steady flow of river can be
assumed to be a laminar flow.

Turbulent flow: It is a flow at a very high
flow rate so that there is no steady flow and the
flow pattern changes continuously as shown in
Fig. 2.27 (b). A flooded river flow or a tap
running very fast is a turbulent flow.

Table 2.3 Streamline Flow and Turbulent Flow

Streamline flow

Turbulent flow

1) The smooth flow of a fluid, with velocity
smaller than certain critical velocity (limiting
value of velocity) is called streamline flow or
laminar flow of a fluid.

1) The irregular and unsteady flow of a fluid
when its velocity increases beyond critical
velocity is called turbulent flow.

2) In a streamline flow, velocity of a fluid at a
given point is always constant.

2) In a turbulent flow, the velocity of a fluid
at any point does not remain constant.

3) Two streamlines can never intersect, i.e., they
are always parallel.

3) In a turbulent flow, at some points, the
fluid may have rotational motion which
gives rise to eddies.

4) Streamline flow over a plane surface can be
assumed to be divided into a number of plane
layers. In a flow of liquid through a pipe of
uniform cross sectional area, all the streamlines
will be parallel to the axis of the tube.

4) A flow tube loses its order and particles
move in random direction.
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Fig. 2.27 (a): Streamline flow.
\_/_\_
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Fig. 2.27 (b): Turbulent flow.

) Can you tell? N

What would happen if two streamlines

L intersect? )

Activity N

Identify some examples of streamline flow
and turbulent flow in every day life. How
would you explain them? When would
your prefer a stream line flow?

2.6 Critical Velocity and Reynolds number:
The flow of a fluid, whether streamline
or turbulent, is differentiated on the basis
of velocity of the flow. The velocity beyond
which a streamline flow becomes turbulent is
called critical velocity.
According to Osborne Reynolds (1842 -
1912), critical velocity is given by
Rn
v, =—"—,
Y
where,
v = critical velocity of the fluid
R = Reynolds number
n = coefficient of viscosity
p = density of fluid
d = diameter of tube
From Eq. (2.32) equation for Reynolds number
can be written as,
v pd

- (2.32)

R, = - (2.33)

n .
Reynolds number is a pure number. It has
no unit and dimensions. It is found that for R

less than 1000, the flow of a fluid is streamline
while for R greater than 2000, the flow of
fluid is turbulent. When R is between 1000
and 2000, the flow of fluid becomes unsteady,
I.e., it changes from a streamline flow to a
turbulent flow.

2.6.1 Viscosity:

When we pour water from a glass, it flows
freely and quickly. But when we pour syrup
or honey, it flows slowly and sticks to the
container. The difference is due to fluid friction.
This friction is both within the fluid itself and
between the fluid and its surroundings. This
property of fluids is called viscosity. Water
has low viscosity, whereas syrup or honey has
high viscosity. Figure 2.28 shows a schematic
section of viscous flow and Fig. 2.29 that of a
non viscous flow. Note that there is no dragging
force in the non-viscous flow, and all layers are
moving with the same velocity.

Fig. 2.28: Viscous flow. Different layers flow with
different velocities. The central layer flows the
fastest and the outermost layers flow the slowest.

Viscosity of such fluid is zero. The only
fluid that is almost non-viscous is liquid
helium at about 2K. In this section, we will
study viscosity of a fluid and how it affects the
flow of a fluid.

Fig. 2.29: Non-viscous flow. Different layers
flow with the same velocity.

If we observe the flow of river water, it
is found that the water near both sides of the
river bank flows slow and as we move towards
the center of the river, the water flows faster
gradually. At the centre, the flow is the fastest.
From this observation it is clear that there is
some opposing force between two adjacent
layers of fluids which affects their relative
motion.
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Viscosity is that property of fluid, by virtue
of which, the relative motion between different
layers of a fluid experience a dragging force.
This force is called the viscous drag. This is

shown schematically in Fig. 2.30.
» v+dv

stationary layer

Fig. 2.30: Change in velocity of layer as its
distance from a referee layer changes.

In liquids, the viscous drag is due to short
range molecular cohesive forces, and in gases
it is due to collisions between fast moving
molecules. In both liquids and gases, as long
as the relative velocity between the layers is
small, the viscous drag is proportional to the
relative velocity. However, in a turbulent flow,
the viscous drag increases rapidly and is not
proportional to relative velocity but proportional
to higher powers of relative velocity.

Velocity gradient: The rate of change of
velocity (dv) with distance (dx) measured
from a stationary layer is called velocity
gradient (dv/dx).

2.6.2 Coefficient of viscosity:

According to Newton’s law of viscosity,
for a streamline flow, viscous force (f) acting
on any layer is directly proportional to the
area (A) of the layer and the velocity gradient
(dv/dx) i.e.,

A2

dx

S f= nA[%j

where 1 is a constant, called coefficient of
viscosity of the liquid. From Eq. (2.34) we can
write,

— (2.34)

f
(i)

dx
Note: ‘A’ in this expression is not the cross

sectional area, it is the area of the layer,
parallel to the direction of the flow.

T’ =
- (2.35)

The coefficient of viscosity can be
defined as the viscous force per unit area per
unit velocity gradient. S.1. unit of viscosity is
Ns/m2,

,—C) Use your brain power>ﬁ

CGS unit of viscosity is Poise. Find the
relation between Poise and the SI unit of
_ Viscosity. )

(A Microsopic View of Viscosity:
Viscosity of a fluid can be explained
on the basic of molecular motion as follow.
Consider the laminar flow between plats
X and Y as shown in the figure. Plate X is
stationary and plate Y moves with a velocity
v,. Layers a, b, and ¢ move with velocity,
v-dv, v, and v + dv respectively. Consider
two adjacent layers, b and c. The velocity
of the fluid is equal to mean velocity of the
molecules contained in that layer. Thus,
the mean velocity of the molecules in
layer b is v, while the molecules in layers
c have a slightly greater mean velocity
v + dv. As you will learn in the next
chapter, each molecule possesses a random
velocity whose magnitude is usually larger
than that of the mean velocity. As a result,
molecules are continually transferred in
large numbers between the two layers. On
the average, molecules passing from layer

v

Plate Y

|
C = v+dy
b Vv
O =y -dv
Plate X

. -

c to layer b will be moving too fast for
their 'new' layer by an amount dv and will
slow down as a result of collisions with the
molecules in layer b. The result is a transfer
of momentum from faster-moving layers c
to their neighboring slower-moving layers
such as b and thus eventually to plate X.
Because the original source of this transfer
of momentum is plate Y, the overall result
is a transfer of momentum from plate Y
\. J
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(o plate X. If there are no external forces |

applied, this momentum transfer would
reduce speed of the plate Y to zero with
respect to the plate X.

Reduction in the velocity of the
molecules in the direction of laminar flow
is due to the fact that their directions after
collision are random. This randomness, to be
discussed in Chapter 3, results in an increase
in the thermal energy of the fluid at the cost
of its macrosopic kinetic energy. That is, the
process is dissipative, or frictional.

In liquids there is an additional,
stronger interaction between molecules in
adjacent layers, due to the intermolecular
forces that distinguish liquid from gases.
As a result, there is a transfer of momentum
from faster-moving layers to slower-moving
layers, which results in a viscous drag.

) Remember this>

Coefficient of viscosity of a fluid changes
with change in its temperature. For
most liquids, the coefficient of viscosity
decreases with increase in their temperature.
It probably depends on the fact that at
higher temperatures, the molecules are
farther apart and the cohesive forces or
inter-molecular forces are, therefore, less
effective. Whereas, in gases, the coefficient
of viscosity increases with the increase
in temperature. This is because, at high
temperatures, the molecules move faster
and collide more often with each other,
_ giving rise to increased internal friction.

Table 2.4 Coefficient of viscosity at different

temperatu res.
Coefficient of
Fluid | Temperature Viscosity
Ns/m?

Air 0°C 0.017 x 10

40°C 0.019 x 10

20°C 1x103
Water 100°C__ |03 x 107
Machine 16°C 0.113 x 103
oil 38°C 0.034 x 10

2.7 Stokes’ Law:

In 1845, Sir George Gabriel Stokes (1819-
1903) stated the law which gives the viscous
force acting on a spherical object falling
through a viscous medium (see Fig. 2.31).

Fig 2.31: Spherical object moving through a
viscous medium.

The law states that, “The viscous force
(F,) acting on a small sphere falling through
a viscous medium is directly proportional
to the radius of the sphere (r), its velocity
(v) through the fluid, and the coefficient of
viscosity (n) of the fluid”.

S F oenrv
The empirically obtained
proportionality is 67 .

s F =6mnrv --- (2.36)

This is the expression for viscous force
acting on a spherical object moving through
a viscous medium. The above formula can be

derived using dimensional analysis.

( )
Example 2.8: A steel ball with radius
0.3 mm is falling with velocity of 2 m/s at
a time t, through a tube filled with glycerin,
having coefficient of viscosity 0.833 Ns/m?.
Determine viscous force acting on the steel
ball at that time.
Solution: Given
r=03mm=03x10°m, v=2mls,
n = 0.833 Ns/m?.
We have, F=6rnrv
F=6x3142x0.833x0.3x10°%x 2

\Therefore, F=9.422x10°N

constant of

J

2.7.1 Terminal Velocity:

Consider a spherical object falling
through a viscous fluid. Forces experienced by
it during its downward motion are,

1. Viscous force (F ), directed upwards.
Its magnitude goes on increasing with
increase in its velocity.
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2. Gravitational force, or its weight (F ),

. g

directed downwards, and
3. Buoyant force or upthrust (F ), directed
upwards.

Net downward force given by
f= F,- (F,+F,) isresponsible forinitial increase
in the velocity. Among the given forces, Fg and
F are constantwhile F increases with increase
in velocity. Thus, a stage is reached when
the net force f becomes zero. At this stage,
F,=F, * F,. After that, the downward velocity
remains constant. This constant downward
velocity is called terminal velocity. Obviously,
now onwards, the viscous force F is also
constant. The entire discussion necessarily
applies to streamline flow only.

1 «— Upth_{ust (F)
Viscous force (F)

<«—— mg downward (F)

Fig. 2.32: Forces acting on object moving
through a viscous medium.

Consider a spherical object falling under
gravity through a viscous medium as shown in
Fig. 2.32. Let the radius of the sphere be r, its
mass m and density p. Let the density of the
medium be o and its coefficient of viscosity
be . When the sphere attains the terminal
velocity, the total downward force acting on
the sphere is balanced by the total upward
force acting on the sphere.

Total downward force = Total upward force
weight of sphere (mg) =
viscous force + by out ant to due to the medium

4 s 4
Enr pg:67mrv+§7rr og

S (%nﬁ pgj—[% nr36gj
P =(§]ﬂr3g(p—6)
V=(§jnr3g(p—0)x
s

n

6rnr

5 - (2.37)

This is the expression for the terminal velocity
of the sphere. From Eq. (2.37) we can also write,
2 —
n=§—r (p G)g --- (2.38)

\%
The above equation gives coefficient of

viscosity of a fluid.
p

Example 2.9: A spherical drop of olil falls\
at a constant speed of 4 cm/s in steady air.
Calculate the radius of the drop. The density
of the oil is 0.9 g/cm?, density of air is
1.0 g/cm®aud the coefficient of viscosity of
air is 1.8 x 10*poise, (g = 980 cm/s?)
Solution: Given,

v =4cm/s

M =1.8 x 10* Poise

6 =0.9¢g/cm?

P =1 glcm?
We have,
2r°(p-o)g
9 \%

Onv
2(p-0)g

9x1.8x107* x4
2x(1—0.9)x980
r=0.574 cm

. J

r‘C) Remember this> ~

The velocity with which an object can

move through a viscous fluid is always less

than or equal to the terminal velocity in that
_fluid for that object.

77:

=

J

2.8 Equation of Continuity:

Consider a steady flow of an
incompressible fluid as shown in Fig. 2.33. For
asteady flow, the velocity of a particle remains
constant at a given point but it can vary from
point to point. For example, consider section
A and A, in Fig. 2.33. Section A has larger
cross sectional area than the section A,. Let v,
and v, be the velocities of the fluid at sections
A, and A, respectively.

This is because, a particle has to move
faster in the narrower section (where there is

IV



Fig. 2.33: Steady
flow fluid.

less space) to accommodate particles behind
it hence its velocity increases. When a particle
enters a wider section, it slows down because
there is more space. Because the fluid is
incompressible, the particles moves faster
through a narrow section and slow down while
moving through wider section. If the fluid does
not move faster in a narrow regain, it will be
compressed to fit into the narrow space.

Consider a tube of flow as shown in
Fig. 2.33. All the fluid that passes through
a tube of flow must pass through any cross
section that cuts the tube of flow. We know
that all the fluid is confined to the tube of flow.
Fluid can not leave the tube or enter the tube.

Consider section A and A, located at
points A and B respectively as shown in
Fig. 2.33. Matter is neither created nor
destroyed within the tube enclosed between
section A, and A,. Therefore, the mass of the
fluid within this region is constant over time.
That means, if mass m of the fluid enters the
section A, then equal mas of fluid should leave
the section A,

Let the speed of the fluid which crosses
the section EFGH at point A in time interval
At be v,. Thus, the volume of the fluid entering
the tube through the cross section at point A
is pA v, At. Similarly, let the speed of the fluid
be v, at point B. The fluid crosses the section
PQRS of area A, in time interval At. Thus, the
mass of the fluid leaving the tube through the
cross section at B is pA,v,At.

As fluid is incompressible, the mass of the
fluid entering the tube at point A is the same as
the mass leaving the tube at B.

Mass of the fluid in section EFGH = mass
of fluid in section PQRS

pA,V, At = pA VAL

A1V1 = sz2 or, Av = constant

- (2.39)
- (2.40)

Av is the volume rate of flow of a fluid,
ie.,

Av = a . The quantity a is the volume

of a fluid per unit time passing through any
cross section of the tube of flow. It is called
the volume flux. Similarly, pdV/dt =dm/dt is
called mass flux.

Equation (2.40) is called the equation of
continuity in fluid dynamics. The continuity
equation says that the volume rate of flow of
an incompressible fluid for a steady flow is
the same throughout the flow.

) Do you know? ~

When water is released from a dam, the
amount of water is mentioned in terms of
Thousand Million Cubic feet (TMC). One
TMC is 10° cubic feet of water per second.
Basic unit of measuring flow is cusec. One
cusec is one cubic feet per sec (28.317 lit
_per Sec).

J

(Example 2.11: As shown in the given figure?
a piston of cross sectional area 2 cm? pushes
the liquid out of a tube whose area at the
outlet is 40 mm? The piston is pushed at a
rate of 2 cm/s. Determine the speed at which
the fluid leaves the tube.

Solution: Given,
A =2cm?*=2x 10" m?
v,=2cm/s =2 x 102 m/s
A, =40 mm? =40 x 10° m?

From equation of continuity, A v, = AV,

Therefore,

v, - Av, :2><10*4><2i<610*2 i

A, 40x10

. J

C) Use your brain power>ﬁ

A water pipe with a diameter of 5.0 cm is
connected to another pipe of diameter 2.5
cm. How would the speeds of the water flow
 compare?

J
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/—C) Do you know? ~

1. How does an aeroplane take off?

2. Why do racer cars and birds have typical
shape?

3. Have you experienced a sideways jerk
while driving a two wheller when a
heavy vehicle overtakes you?

4. Why does dust get deposited only on one
side of the blades of a fan?

5. Why helmets have specific shape?

. J

2.9 Bernoulli Equation:

On observing a river, we notice that the
speed of the water decreases in wider region
whereas the speed of water increases in the
regions where the river is narrow. From this
we might think that the pressure in narrower
regions is more than that in the wider region.
However, the pressure within the fluid in the
narrower parts is less while that in wider parts
iS more.

Swiss scientist Daniel Bernoulli (1700-
1782), while experimenting with fluid inside
pipes led to the discovery of the concept
mentioned above. He observed, in his

experiment, that the speed of a fluid in a narrow
region increases but the internal pressure of a
fluid in the same narrow region decreases. This
phenomenon is called Bernoulli’s principle.

Xlﬁs

=

Fig. 2.34: Flow of fluid through a tube of
varying cross section and height.

Bernoulli’s equation relates the speed of a
fluid at a point, the pressure at that point and
the height of that point above a reference level.
It is an application of work — energy theorem
for a fluid in flow. While deriving Bernoulli’s
equation, we will prove that the net work
done on a fluid element by the pressure of the

surrounding fluid is equal to the sum of the

change in the kinetic energy and the change in

the gravitational potential energy.

Figure 2.34 shows flow of an ideal fluid
through a tube of varying cross section and
height. Consider an element of fluid that lies
between cross sections P and R.

Let,

v, and v, be the speed the fluid at the lower
end P and the upper end R respectively.

« A and A, be the cross section area of the
fluid at the lower end P and the upper end
R respectively.

* p,and p, be the pressures of the fluid at the
lower end P and the upper R respectively.

« d, and d, be the distances travelled by the
fluid at the lower and P and the upper and
R during the time interval dt with velocities
v, and v, respectively.

* p,A and p,A, be the forces acting on the
equation of continuity, (Eg.2.40), the
volume dV of the fluid passing through any
cross section during time interval dt is the
same; i.e.,

dv=Ad =Ad, --- (2.41)

There is no internal friction in the fluid as
the fluid is ideal. In practice also, for a fluid like
water, the loss in energy due to viscous force is
negligible. So the only non-gravitational force
that does work on the fluid element is due to the
pressure of the surrounding fluid. Therefore,
the net work, W, done on the element by the
surrounding fluid during the flow from P to R
is,

W= plAldl - pzAzdz

The second term in the above equation has
a negative sign because the force at R opposes
the displacement of the fluid. From Eq. (2.41)
the above equation can be written as,

W =p,dV-p,dV

s W= (p,-p,) dV ---(2.42)

As the work W is due to forces other than
the conservative force of gravity, it equals the
change in the total mechanical energy i.e.,
kinetic energy plus gravitational potential
energy associated with the fluid element.

i.e., W=AK.E. + AP.E. - (2.43)

The mechanical energy for the fluid
between sections Q and R does not change.
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At the beginning of the time interval
dt, the mass and the Kkinetic energy
of the fluid between P and Q is, P
Ad, and %,o(Alall)v]2 respectively. At
the end of the time interval dt, the Kinetic

energy of the fluid between section R and S is

1
3P (4,d,) V3. Therefore, the net change in the

kinetic energy, AK.E., during time interval dt
is,

1
AK.E. = p(Ade)Vg B Ep(Aldl)Vlz

AKE. = —pdIvi— %pdva

AKE. = - pdV (vi=v]) - (2.44)

Also, at the beginning of the time interval
dt, the gravitational potential energy of the
mass m between P and Q is mgh, = pdVgh..
At the end of the interval dt, the gravitational
potential energy of the mass m between R and
S is mgh, = pdVgh,. Therefore, the net change
in the gravitational potential energy, AP.E.,
during time interval dt is,

AP.E. = pdVgh, - pdVgh,

AP.E. = pdVg (h,- h,) --- (2.45)
Substituting Eq. (2.42), (2.44) and (2.45) in
Eq. (2.43) we get,

(p1 _pz)dV :%pdV(Vi _Vlz)

+pdVg(h,—h)
1
'.'(pl _pz)zap(vi _V12)

+pg(h2—]’l1) . (2.46)

This is Bernoulli’s equation. It states that
the work done per unit volume of a fluid by
the surrounding fluid is equal to the sum of
the changes in kinetic and potential energies
per unit volume that occur during the flow.
Equation (2.46) can also be written as,

1 1
it PV F Py =Pyt pYs + pghy—-(2.47)

1
or, P+ pv’ +pgh=constant  --- (2.48)

( )
A different way of interpreting the
Bernoulli’s equation:

1
(pl—p2)=§p(vi—Vf)+pg(h2—hl)

Dimensionally, pressure is energy per unit
volume. Both terms on the right side of the
above equation have dimensions of energy
per unit volume. Hence, quite often, the
left side is referred to as pressure energy
per unit volume. The left side of equation
is called pressure head. The first term on
the right side is called the velocity head
and the second term is called the potential
head.

In other words, the Bernoulli’s principle
is thus consistent with the principle of
conservation of energy.

N

J

Example 2.12: The given figure shows a |
streamline flow of a non-viscous liquid
having density 1000 kg/m®. The cross
sectional area at point A is 2 cm? and at
point B is 1 cm?. The speed of liquid at the
point A is 5 cm/s. Both points A and B are
at the same horizontal level. Calculate the
difference in pressure at A and B.

B

A e e B

_/__

Solution: Given,

p =1000 kg/m* A =2cm*>=2 x 10% m?
A,=1cm?=10"m? v, =5cm/s =5 x 10?
m/s and h.=h,

From the equation of continuity,

Alvl = AZVZ 5
v, AV 2 235107 _ g0 s
A, 1072

By Bernoulli’s equation,

(p1 —pZ)dV zépdV(Vi —V12)
+pdVg(h,—h,)
(since, h,—h, =0)

(p,—p,)dV :%pdV(Vi —V]z)

:%xlOOOx(lOO—0.00%)

= 500 x 99.99

| p,-p,= 49998.75, Pa = 4.9 x 10° Pa

T



) Use your brain power

Doesthe Bernoulli’s equation change when
the fluid is at rest? How?

Applications of Bernoulli’s equation:
a) Speed of efflux:

The word efflux means fluid out flow.
Torricelli discovered that the speed of efflux
from an open tank is given by a formula
identical to that of a freely falling body.

p A, T
Y I
P
A

Fig. 2.35: Efflu; of fluid from an orifice.

Consider a liquid of density ‘p’ filled in a
tank of large cross-sectional area A, having an
orifice of cross-sectional area A, at the bottom
as shown in Fig. 2.35. Let A <<A.. The liquid
flows out of the tank through the orifice. Let
v, and v, be the speeds of the liquid at A, and
A, respectively. As both, inlet and outlet, are
exposed to the atmosphere, the pressure at
these position equals the atmosphere pressure
p,- If the height of the free surface above the
orifice is h, Bernoulli’s equation gives us,

1 1
o +5pr +pgh=p, +§pV§ --- (2.49)
Using equation the of continuity we can write,
1 :ivz
A
Substituting v, in Eq.(2.49) we get,

2
I (4, » 1,
—p|—=| v,+pgh=—pv
2P[Alj »TPg 2pz

v

2
A
[j} vi+2gh=v,

1

2
A
2gh=v; —(jj Vi
1

2
A
Sl 1= —2] Ve =2gh

If A,<<A,, the above equation reduces to,

v, =\2gh - (2.50)

This is the equation of the speed of a
liquid flowing out through an orifice at a depth
‘h’ below the free surface. It is the same as that
of a particle falling freely through the height
‘h’ under gravity.

(Example 2.13: Doors of a dam are 20 m\
below the surface of water in the dam. If
one door is opened, what will be the speed
of the water that flows out of the door?
(g =9.8 m/s?)

Solution: Given, h=20m
From Toricelli’s law,

V= +J2g9h = J2x9.8x20 = /392

=19.79 m/s

&
b) Ventury tube:

A ventury tube is used to measure the
speed of flow of a fluid in a tube. It has a
constriction in the tube. As the fluid passes
through the constriction, its speed increases
in accordance with the equation of continuity.
The pressure thus decreases as required by the
Bernoulli equation.

Ih

J

_—
—V,

iy

P,
A, A,
Fig. 2.36: Ventury tube.

The fluid of density p flows through the
Ventury tube. The area of cross section is A,
at wider part and A, at the constriction. Let the
speeds of the fluid at A, and A, be v, and v,,
and the pressures, be p, and p, respectively.
From Bernoulli’s equation,

| 1,
P, +5PV1 =p2+zpvz

(p - pz)%p(v; Vi) - (251)

Figure 2.36 shows two vertical tubes connected
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tothe Ventury tube at A, and A,. If the difference
in height of the liquid levels in the tubes is h,
we have,

(pl - D,) :pgh)

Substituting above equation in Eq. (2.51) we
get,

2gh=v;-v; --- (2.52)
From the equation of continuity, A v, = A)v,,
substituting v, in terms of v, or vice versa in
Eq. (2.52) the rate of flow of liquid passing
through a cross section can be calculated by

knowing the areas A and A..

(Example 2.13: Water flows through al
tube as shown in the given figure. Find the
difference in mercury level, if the speed of
flow of water at point A is 2 m/s and at point
B is 5 m/s. (g = 9.8 m/s)

Solution: Given, v, =2 m/s, v,=5m/s
We have,
2gh = v -v;
therefore,
Cviev:  25-4 21
= T 2x98 " 196 - 10TM
—\/—/
Ae B e
E— _\’
| l<—mercury
\ J

c¢) Lifting up of an aeroplane:

y
VY VYN

Fig. 2.37: Airflow along an aerofoil.

The shape of cross section of wings
of an aeroplane is as shown in Fig. 2.37.
When an aeroplane runs on a runway, due to
aerodynamic shape of its wings, the streamlines
of air are crowded above the wings compared
to those below the wings. Thus, the air above
the wings moves faster than that below the
wings. According to the Bernoulli’s principle,
the pressure above the wings decreases and

that below the wings increases. Due to this
pressure difference, an upward force called the
dynamic lift acts on the bottom of the wings of
a plane. When this force becomes greater than
the weight of aeroplane, the aeroplane takes
off.

d) Working of an atomizer:

H=

Fig. 2.38: Atomizer.

The action of the carburetor of an
automobile engine, paint-gun, scent-spray
or insect-sprayer is based on the Bernoulli’s
principle. In all these, a tube T is dipped in a
liquid as shown in Fig. 2.38. Air is blown at
high speed over the tip of this tube with the help
of a piston P in the cylinder C. This high speed
air creates low pressure over the tube, due to
which the liquid rises in it and is then blown off
in very small droplets with expelled air.

e) Blowing off of roofs by stormy wind:

Fig. 2.39: Airflow along a roof.

When high speed, stormy wind blows
over a roof top, it causes low pressure p above
the roof in accordance with the Bernoulli’s
principle. However, the air below the roof
(i.e. inside the room) is still at the atmospheric
pressure p,. So, due to this difference in
pressure, the roof is lifted up and is then blown
off by the wind as shown in Fig. 2.39.

) Observe and discuss

Observe the shape of blades of a fan and
discuss the nature of the air flow when fan
is switched on.
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C) Internet my friend>

http://hyperphysics.phy-astr.gsu.edu/

hbase/pfric.html

https://opentextbc.ca/physicstestbook?2/

chapter/chapter-1/

https://opentextbc.ca/physicstestbook?2/

chapter/pressure/

https://opentextbc.ca/physicstestbook?2/
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1) Multiple Choice Questions

i)

i)

A hydraulic lift is designed to lift heavy
objects of maximum mass 2000 kg. The
area of cross section of piston carrying
the load is 2.25 x 102 m2, What is the
maximum pressure the smaller piston
would have to bear?

(A) 0.8711 x 10° N/m?

(B) 0.5862 x 107 N/m?

(C) 0.4869 x 10° N/m?

(D) 0.3271 x 10* N/m?

Two capillary tubes of radii 0.3 cm and
0.6 cm are dipped in the same liquid.
The ratio of heights through which the
liquid will rise in the tubes is

(A)1:2 (B)221 (C)14 (D)41
The energy stored in a soap bubble of
diameter 6 cm and T = 0.04 N/m is nearly
(A)0.9x10%J (B)0.4x103J
(©)0.7x10°%J) (D)0.5x10%J

Two hail stones with radii in the ratio
of 1:4 fall from a great height through
the atmosphere. Then the ratio of their
terminal velocities is

(A)1:2 (B)1:12 (C)1:16 (D)1:8
In Bernoulli’s theorem, which of the
following is conserved?

(A) linear momentum

(B) angular momentum

(C) mass

(D) energy

i)
i)
i)

iv)

2) Answer in brief.

Why is the surface tension of paints and
lubricating oils kept low?

How much amount of work is done in
forming a soap bubble of radius r?
What is the basis of the Bernoulli’s
principle?

Why is a low density liquid used as
a manometric liquid in a physics
laboratory?

What is an incompressible fluid?

Why two or more mercury drops form a
single drop when brought in contact with
each other?

Why does velocity increase when water
flowing in broader pipe enters a narrow
pipe?

Why does the speed of a liquid increase
and its pressure decrease when a
liquid passes through constriction in a
horizontal pipe?

Derive an expression of excess pressure
inside a liquid drop.

Obtain an expression for conservation
of mass starting from the equation of
continuity.

Explain the capillary action.

Derive an expression for capillary rise
for a liquid having a concave meniscus.

IV
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11.

12.

13.

14.

15.

16.

17.

Find the pressure 200 m below the
surface of the ocean if pressure on the
free surface of liquid is one atmosphere.
(Density of sea water = 1060 kg/m®)
[Ans. 21.789 x 10° N/m?]
In a hydraulic lift, the input piston had
surface area 30 cm? and the output piston
has surface area of 1500 cm?. If a force
of 25 N is applied to the input piston,
calculate weight on output piston.
[Ans. 1250 N]
Calculate the viscous force acting on
a rain drop of diameter 1 mm, falling
with a uniform velocity 2 m/s through
air. The coefficient of viscosity of air is
1.8 x 10°° Ns/m?.
[Ans. 3.393 x 107 N]
A horizontal force of 1 N is required to
move a metal plate of area 102 m? with a
velocity of 2 x 10 m/s, when it rests on
a layer of oil 1.5 x 10 m thick. Find the
coefficient of viscosity of oil.
[Ans. 7.5 Ns/m?]
With what terminal velocity will an
air bubble 0.4 mm in diameter rise in a
liquid of viscosity 0.1 Ns/m? and specific
gravity 0.9? Density of air is 1.29 kg/m?.
[Ans. - 0.782 x 10° m/s, The negative
sign indicates that the bubble rises up]
The speed of water is 2m/s through a
pipe of internal diameter 10 cm. What
should be the internal diameter of nozzle
of the pipe if the speed of water at nozzle
IS 4 m/s?
[Ans. 7.07 x 102 m]
With what velocity does water flow
out of an orifice in a tank with gauge
pressure 4 x 10° N/m? before the flow
starts? Density of water = 1000 kg/m?.
[Ans. 28.28 m/s]
The pressure of water inside the closed
pipe is 3 x 10° N/m2 This pressure
reduces to 2 x 10° N/m? on opening the

18.

19.

20.

21.

22.

23.

value of the pipe. Calculate the speed of
water flowing through the pipe. (Density
of water = 1000 kg/md).
[Ans. 14.14 m/s]
Calculate the rise of water inside a
clean glass capillary tube of radius
0.1 mm, when immersed in water of
surface tension 7 x102 N/m. The angle
of contact between water and glass is
zero, density of water = 1000 kg/m?3, ¢
=9.8 m/s%
[Ans. 0.142 m]
Anair bubble of radius 0.2 mm is situated
just below the water surface. Calculate
the gauge pressure. Surface tension of
water = 7.2 x 102 N/m.
[Ans. 7200 N/m?]
Twenty seven droplets of water, each
of radius 0.1 mm coalesce into a single
drop. Find the change in surface energy.
Surface tension of water is 0.072 N/m.
[Ans. 1.628 x 103 J]
A drop of mercury of radius 0.2 cm is
broken into 8 droplets of the same size.
Find the work done if the surface tension
of mercury is 435.5 dyne/cm.
[Ans. 2.18 x 10%]]
How much work is required to form
a bubble of 2 cm radius from the
soap solution having surface tension
0.07 N/m.
[Ans. 0.703 x 102 J]
A rectangular wire frame of size
2 cm x 2 cm, is dipped in a soap solution
and taken out. A soap film is formed,
if the size of the film is changed to
3 cm x 3 cm, calculate the work done in
the process. The surface tension of soap
film is 3 x 102 N/m.
[Ans. 3 x 10°]]

koK
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3. Kinetic Theory of Gases and Radiation

C) Can you recall? N

1. What are different states of matter?

2. How do you distinguish between solid,
liquid and gaseous states?

3. What are gas laws?

What is absolute zero temperature?

5. What is Avogadro number? What is a
mole?

6. How do you get ideal gas equation from
the gas laws?

7. How is ideal gas different from real
gases?

8. What is elastic collision of particles?

9. WhatisDalton'slaw of partial pressures?)

&

3.1. Introduction:

You have been introduced to the three
common states of matter viz. solid, liquid
and gas. You have also studied the gas laws:
Boyle's law, Charles' law, and Gay-Lussac's
law. The ideal gas equation can be obtained
from the three gas laws.

The volume V of a gas is inversely
proportional to the pressure P, temperature
being held constant. Separately, volume V
and pressure P are directly proportional to
temperature. In a nut shell,

Boyle's law: V oc 1/P at constant T --- (3.1)
Charles' law V o« T at constant P ---(3.2)
Gay-Lussac's law: P oc T at constant V--- (3.3)

All the three laws apply to fixed mass m
of an enclosed gas.

Combining the three laws into a single
relation for a fixed mass of gas yields ideal
gas equation. Thus,

PV o T, or % = %

LT

Expressing the fixed mass of gas in the
above three laws in terms of number of moles
n of gas, PV o nT, or PV =nRT,

where number of moles

,  mass of thegas(M) N

molar mass (M) N,

(Molar mass is the mass of 1 mole of gas)

Here, proportionality constant R is the
universal gas constant, having the same
value 8.314 J mol* K, for all the gases, N is
the number of molecules in the gas and N, is
the Avogadro number and is the number of
molecules in one mole of gas.

Alternatively,

PV = NKk,T, - (3.4)

where k is the Boltznann constant. R and
k, are related by the following relation:

R=N,_ kg --- (3.5)

The laws of Boyle, Charles, and Gay-
Lussac are strictly valid for real gases, only
if the pressure of the gas is not too high and
the temperature is not close to the liquefaction
temperature of the gas.

A gas obeying the equation of state
PV =nRT at all pressures, and temperatures is
an ideal gas.

( Equation of State: For a gas, its state is |
specified by a number of physical quantities
such as pressure P, temperature T, volume
V, internal energy E, etc. Hence, the
equation relating these quantities is known

_as the equation of state. )

3.2 Behaviour of a Gas:

A stone thrown upwards in air reaches
a certain height and falls back to the ground.
Its motion can be described well with the
help of Newton's laws of motion. A gas
enclosed in a container is characterized by its
pressure, volume and, temperature. This is the
macroscopic description of the gas. You know
that the particles of the gas (molecules) are in
constant motion. Unlike in the case of motion
of the stone, it is very difficult to understand
the behaviour of a gas in terms of motion of
a single particle (molecule). The number of
particles in the gas is itself so large (~ 10%
particles per m®) that any attempt to relate the
macroscopic parameters P, V, T and E with the
motion of individual particles would be futile.
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Hence, certain assumptions are made
regarding the particles (molecules) of a gas,
averages of physical quantities over the large
number of particles involved are obtained
and these averages are finally related to the
macroscopic parameters of the gas. This is the
approach of kinetic theory of gases.

3.3 Ideal Gas and Real Gas:

We know that a gas obeying ideal gas
equation at all pressures and temperatures is
an ideal gas. In an ideal gas intermolecular
interactions are absent. Real gases are
composed of atoms or molecules which do
interact with each other. Hence, no real gas
is truly ideal as defined here. If the atoms/
molecules of a real gas are so far apart that
there is practically no interatomic/
intermolecular interaction, the real gas is
said to be in the ideal state. This can happen
at sufficiently low density of the real gas.
At low pressures or high temperatures,
the molecules are far apart and therefore
molecular interactions are negligible. Under
these conditions, behaviour of real gases
is close to that of an ideal gas. Of course,
the temperature of the real gas must be well
above its liquefaction temperature. Ideal gas
serves as a model to deduce certain properties
of real gases at least when the real gas is in
the ideal state. You have studied deviation of
real gas from ideal gas behaviour in XI*" Std.
Chemistry.

) Can you tell? N

1. Why is the deviation of real gas from
ideal gas behavior observed at high
pressure and low temperature?

2. What is the effect of size of the
molecules of a real gas, as against the
ideal gas comprising point particles, on
the properties of the gas ?

3. Does an ideal gas exist in reality?

&

3.4 Mean Free Path:

How do the molecules of an ideal gas
move? These molecules are in continuous
random motion such as Brownian motion you
have studied in XI" Std. Chemistry.

> g

Fig. 3.1 (a): A gas with
molecules dispersed in
the container: A stop executing random

action photograph. motion.
The molecules of a gas are uniformly

dispersed throughout the volume of the gas
as shown in Fig 3.1(a). These molecules are
executing random motion. Typical path of
a molecule is shown in Fig. 3.1 (b). When
a molecule approaches another molecule,
there is a repulsive force between them, due
to which the molecules behave as small
hard spherical particles. This leads to elastic
collisions between the molecules. Therefore,
both the speed and the direction of motion of
the molecules change abruptly. The molecules
also collide with the walls of the container.
Molecules exert force on each other only
during collisions. Thus, in between two
successive collisions the molecules move
along straight paths with constant velocity. It
is convenient and useful to define mean free
path (1), as the average distance traversed by
a molecule with constant velocity between
two successive collisions. The mean free path
Is expected to vary inversely with the density

Fig. 3.1 (b): A typical
molecule in a gas

of the gas p :l, where N is the number of
molecules enclosed in a volume V. Higher the
density, more will be the collisions and smaller
will be the mean free path A. It is also seen that
A is inversely proportional to the size of the
molecule, say the diameter d. Smaller the size
of the molecule, less is the chance for collision
and larger is the mean free path. Further, A is
inversely proportional to d?, not just d, because
it depends on the cross section of a molecule. It

can be shown that
1

A=
2 (N 1Y)

a2 2o 2

- (3.6)



Example: 3.1 Obtain the mean free path
of nitrogen molecule at 0 °C and 1.0 atm
pressure. The molecular diameter of
nitrogen is 324 pm (assume that the gas is
ideal).
Solution: GivenT=0°C =273 K,P=1.0
atm = 1.01x10° Pa and d = 324 pm = 324 x
102 m.
For ideal gas PV = Nk.T, .. %= ki
Using Eq. (3.6), mean free path
P 1 _ k,T
2
V
(1.38x10J/K)(273K)

i V27(324x10"m)’ (1.01x10° Pa)

=0.8x10"m
Note that this is about 247 times molecular
\diameter.

( R )
If the pressure of a gas in an enclosure is

reduced by evacuating it, the density of
the gas decreases and the mean free path
increases. You must have seen articles
coated with metal films. The metals are
heated and evaporated in an enclosure.
The pressure in the enclosure is reduced
so that the mean free path of air molecules
is larger than the dimensions of the
enclosure. The atoms in the metal vapour
then do not collide with the air molecules.
. They reach the target and get deposited.

3.5 Pressure of Ideal Gas:

We now express pressure of an ideal
gas as a kinetic theory problem. Let there be
n moles of an ideal gas enclosed in a cubical
box of volume V (= L3) with sides of the box
parallel to the coordinate axes, as shown in Fig.
3.2. The walls of the box are kept at a constant
temperature T. The question is: can we relate
the pressure P of the gas with the molecular
speeds? Here we will use the word molecular
speed rather than molecular velocity since the
kinetic energy of a molecule depends on the
velocity irrespective of its direction.

J

~
T

L

> X

L

Fig. 3.2: A cubical box of side L. It contains
n moles of an ideal gas. The figure shows a
molecule of mass m moving towards the shaded

wall of the cube with velocity v.

The gas molecules are continuously
moving randomly in various directions,
colliding with each other and hitting the walls
of the box and bouncing back. As a first
approximation, we neglect intermolecular
collisions and consider only elastic collisions
with the walls. (It is not unphysical to assume
this, because, as explained earlier, the mean
free path increases as the pressure is reduced.
Thus, pressure is so adjusted that the molecules
do not collide with each other, but collide with
the walls). A typical molecule is shown in the
Fig. 3.2 moving with the velocity v, about to
collide with the shaded wall of the cube. The
wall is parallel to yz-plane. As the collision
Is assumed to be elastic, during collision, the
component v, of the velocity will get reversed,
keeping v, and v, components unaltered.

[ Consider two dimensional elastic collision
of a particle with a wall along the y-axis
as shown in the accompanying figure. It
can be easily seen that the v. component is
reversed, v, remaining unchanged.

X
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Considering all the molecules, their
average y and z components of the velocities
are not changed by collisions with the
shaded wall. This can be understood from
the fact that the gas molecules remain evenly
distributed throughout the volume and do not
get any additional motion in +y or -y and +z
or -z directions. Thus the y and z components
remain unchanged during collision with the
wall parallel to the yz-plane.

Hence the change in momentum of the
particle is only in the x component of the
momentum, Ap, is given by

Ap, = final momentum - initial momentum

=(-mv)-(mv)=-2myv, --- (3.7)

Thus, the momentum transferred to the

wall during collision is + 2mv_. The rebounced

molecule then goes to the opposite wall and
collides with it.

We now set the average force exerted by
one molecule on the wall equal to the average
rate of change of momentum during the time
for one collision. To find this average rate, we
have to divide the change in momentum by the
time taken for one collision.

After colliding with the shaded wall,
the molecule travels to the opposite wall and
is reflected back. It travels back towards the
shaded wall again to collide with the shaded
wall. This means that the molecule travels a
distance of 2L in between two collisions. Hence
to get the average force, we have to divide by
the time between two successive collisions.

As L is the length of the cubical box, the
time for the molecule to travel back and forth
to the shaded wall is Af = % .

\%

Average force exerted on the shaded wall
by molecule 1 is given as
Average force = Average rate of change of

momentum
_ 2mv _mvf{1
2L/v., L - (38)

where v, is the x component of the velocity of
molecule 1.

Considering other molecules 2, 3, 4 ... with
the respective xcomponents of velocitiesv ,,v
v, ,...., the total average force on the wall from
Eqg. (3.8), is

m
= f(vil +Vi, v+ )
.. The average pressure
Average force

~ Area of shaded wall
m(vil +vi+ )
- L-I?
The average of the square of the x component
of the velocities is given by
el ViV Vi vy
) N

o2
mN v’

P --- (3.9)
- .V .
where v2 is the average over all possible
values of v .
Now \7 = €+€+_§

By symmetry, vi=v] =v: _ 137 since the
molecules have no preferred direction to move.
Therefore, average pressure

p=iN --- (3.10)

3V

Equation (3.10) has been obtained for a
cubical shaped container. However, it can be
shown to be valid for containers of any shape.
Also, we have assumed that there are no inter-
molecular collisions. The number of molecules
in the container is so large (of the order of
10%%) that even if molecular collisions are
taken into account, the above expression does
not change. If a molecule acquires a velocity
with components different than v,, v, v, after
collision, there will invariably be some other
molecule having different initial velocity now
acquiring the velocity with the components v ,
V, V,. As the gas is steady (in equilibrium), this
must be happening. Thus the collisions do not
affect Eq. (3.10).
3.6 Root Mean Square (rms) Speed:

Equation (3.10) gives the mean square

speed of the molecules of a gas.
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— 3PV

vV =——
_Nm :

Using ideal gas equation PV = nRT,
— _3nRT _3NRT

- (3.12)

.V = =
Nm N, ,Nm
W mv = P 1)
MO

where M, = N,m is the molar mass of the gas.
Equation (3.12) allows us to estimate rms
speeds of molecules of real gases. For nitrogen
gas, at 300 K, the rms speed in 517 m/s, while
for oxygen gas it is 483 m/s.

You have studied passage of sound waves
through air medium. Speed of sound in a gas
IS v, = 7RT , Where ¥ - is called the

s Mo CV
adiabatic ratio. Its maximum value is 5/3, for
monatomic gases. The sound wave cannot
move faster than the average speed of the
molecules (since y < 3). However, the two
speeds are of the same order of magnitude.
The molecules serve as a medium to transport
sound energy. The speed of sound in H, gas is
comparable to the rms speed of H, molecules
and in N, gas to the rms speed of N, molecules.
3.7 Interpretation of Temperature in Kinetic

Theory:
Equation (3.10) can be written as
PV = %Nm?

:%N(lm?j - (3.13)
3 2

The quantity %mv2 is the average
translational kinetic energy of a molecule. In
an ideal gas, the molecules are noninteracting,
and hence there is no potential energy term.
Thus, the internal energy of an ideal gas is
purely Kinetic.

The average total energy E, therefore, is
E:N%m? - (3.14)

From Eq. (3.13),

,—C) Do you know? ~

Distribution of speeds of molecules:

We know that the molecules of a gas are
in continuous random motion. Magnitudes
of their velocities i.e., the speeds are
varying. In the previous sections we saw
that root mean square speed, v_, is akind of
average speed at a given temperature. How

n(v)

n,

viv, —

many molecules will have speeds greater
or smaller than v ? Molecules can have
varying speeds in the range zero to infinity.
What is the number of molecules having a
particular speed in this range? This function,
the number of molecules as a function of the
speed is known as the distribution of speeds.
Figure shows a typical distribution of speeds
for a gas at a temperature T. This is known
as Maxwell's distribution of molecular
speeds. Here, the shaded area n  dv is the
number of molecules having speed between
v and v + dv. Average values of physical
quantities like 2 can be calculated once

\the distribution is known. )

PV =§E --- (3.15)
Using ideal gas equation,
PV = Nk,T :EE --- (3.16)
3

~E =5NkBT --- (3.17)
E 3

or —==k,T ---(3.18
N7k (3.18)

This means that the average energy
per molecule is proportional to the absolute
temperature T of the gas. This equation relates
the macroscopic parameter of the gas, T, to the
kinetic energy of a molecule.
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(Example 3.2: At 300 K, what is the rms]
speed of Helium atom? [mass of He atom is

4u, 1u=1.66 x 10% kg; k, = 1.38 x 10* J/K]

Solution: Given T =300 K,

m=4x 1.66 x 10" kg

Average K. E. = % mv’ = %kBT

.73 3k, T 3x1.38x107 x300

.V
m 4x1.66x107%
=187.05x10"
v :\/v:2=13.68><102
=1368m/s

3.8 Law of Equipartition of Energy:
We have seen that the kinetic energy of a
single molecule is

K.E.zlmvi+lmvz_+lmvi
2 2 72

Foragasatatemperature T, the average kinetic
energy per molecule denoted as <KE> IS

(K.E.) =<%mvi>+<%mvi>+<%m\,2>

But we know that the mean energy per

.3 : :
molecule is — k,T. Since there is no preferred
direction x or'y or z,

lmvfc = lmV2 = lmvﬁ =lkBT
2 27 2 2

--- (3.19)
Thus the mean energy associated with

every component of translational Kkinetic
energy which is quadratic in the velocity

components in x, y and z directions is lkBT

and therefore the total translational eznergy
contribution of the molecule is (3/2)k,T.
3.8.1 Degrees of Freedom:

In the above discussion, the molecule
as a whole is free to move from one point
to the other in the three dimensional space.
If it is restricted to move in a plane surface
which is two dimensional, then only two
coordinates say x and y will be sufficient to
describe its location and two components v,
v, will describe its motion in the plane. If a

molecule moves along a straight line, then only
x coordinate and only one velocity component
v, will be sufficient to describe its location and
motion along a straight line.

We say that the molecule is free to
execute 3, 2, and 1 dimensional translational
motion in the above examples. In other words,
the molecule in these examples has 3, 2, and 1
degrees/degree of freedom.

Degrees of freedom of a system are
defined as the total number of coordinates or
independent quantities required to describe
the position and configuration of the system
completely.

3.8.2 Diatomic Molecules:

Fig. 3.3: The two independent axes z and y
of rotation of a diatomic molecule such as O,
lying along the x-axis.

Monatomic gas like helium contains He
atoms. An He atom has 3 translational degrees
of freedom (dof). Consider for example, O, or
N, molecule with the two atoms lying along
the x-axis. The molecule has 3 translational
dof. In addition, it can rotate around z-axis and
y-axis. Figure 3.3 depicts rotation of molecule
about the z-axis. Like wise, rotation is possible
about the y-axis. (Note that rotation around
the x-axis is not a rotation in the sense that it
does not involve change of positions of the two
atoms of the molecule). In general, a diatomic
molecule can rotate about its centre of mass
in two directions that are perpendicular to
its molecular axis. The molecules like O,
are therefore, said to possess 2 additional
dof namely 2 rotational dof. Each of these
2 dof contribute to rotational kinetic energy.
It can be shown that if I, and I are moments
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of inertia about z and y axes with o, and o,
the respective angular speeds, the rotational

- N L, 2 1
Kinetic energies will be Elza)z and 51"603'

for rotation around the two axes. Thus for a

diatomic molecule, the total energy due to
translational and rotational dof is
E = E (translational) +E (rotational)
1

= —mv.+—mv, +—mv’
2 2 2

NI - (3.20)
z77z 2 y oy

The above expression contains quadratic
terms that correspond to various dof of a

diatomic molecule. Each of them contributes

lkBT to the total energy of the molecule. In
2

the above discussion, an implicit assumption
was made that the rotating molecule is
a rigid rotator. However, real molecules
contain covalent bonds between the atoms
and therefore can perform additional motion
namely vibrations of atoms about their mean
positions like a one-dimensional harmonic
oscillator. Such molecules therefore possess
additional dof corresponding to the different
modes of vibration. In diatomic molecules like
0,, N, and CO, the atoms can oscillate along
the internuclear axis only. This motion adds
energy associated with the vibrations to the
total energy of the molecule.

E = E (translational) +E (rotational)+

E (vibrational) ---(3.21)

The term E (vibrational) consists of two
contributions - one from the kinetic energy
term and the other from the potential energy
term. oL 1,
E (vibrational) =5 mu +§kr ---(3.22)

where U is the velocity of vibrations of the
atoms of the molecule, r is the separation
between the atoms performing oscillations
and k is related to the force constant. The terms
in Eq. (3.22) are quadratic in velocity and
position respectively and each will contribute

%kBT . Thus each mode or dof for vibrational

motion contributes 2 x lkBT to the total
internal energy.

Hence for a non-rigid diatomic gas in
thermal equilibrium at a temperature T, the
mean Kkinetic energy associated with the
translational motion of molecule along the

three directions is 3 x lkBT , the mean kinetic

energy associated with the rotational motions

about two perpendicular axes is 2 x %kBT

and total vibrational energy is 2 x lkBT
2

corresponding to kinetic and potential energy
terms. Considering the above facts law of
equipartition of energy is stated as: for a gas
in thermal equilibrium at a temperature T,
the average energy for molecule associated

with each quadratic term is %kBT. The

law of equipartition of energy is valid for
high temperatures and not for extremely low
temperatures where quantum effects become
important.

3.9 Specific Heat Capacity:

You know that when the temperature of
a gas is increased, even a small rise causes
considerable change in volume and pressure.
Therefore two specific heats are defined for
gases, namely specific heat at constant volume
C,, and specific heat at constant pressure C,.
Mayer’s relation gives an expression that
connects the two specific heats.

3.9.1 Mayer’s Relation:

Consider one mole of an ideal gas that
is enclosed in a cylinder by light, frictionless
airtight piston. Let P, V and T be the pressure,
volume and temperature respectively of the
gas. If the gas is heated so that its temperature
rises by dT, but the volume remains constant,
then the amount of heat supplied to the gas,
dQ,, is used to increase the internal energy
of the gas (dE). Since, volume of the gas is
constant, no work is done in moving the piston.
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- dQ,=dE=C,, dT --- (3.23)
where C,, is the molar specific heat of the gas
at constant volume.

On the other hand, if the gas is heated to
the same temperature, at constant pressure,
volume of the gas increases by an amount say
dV. The amount of heat supplied to the gas
is used to increase the internal energy of the
gas as well as to move the piston backwards
to allow expansion of gas (the work done to
move the piston dW = PdV)

dQ,=dE+dwW=C,dT --- (3.24)
where C_ is the molar specific heat of the gas
at constant pressure.

But dE = C,, dT from Eq. (3.23) as the internal
energy of an ideal gas depends only on its
temperature.

“ C,dT=C,dT +dwW

or, (C,-C)dT=PdVv
For one mole of gas,

PV =RT

. P dv=RdT, since pressure is constant.
Substituting in Eq. (3.25), we get

(C,-C)dT=RdT

. C,-C,=R --- (3.26)

This is known as Mayer’s relation
between C_ and C,,.

The above relation has been derived
assuming that the heat energy and mechanical
work are measured inthe same units. Generally,
heat supplied is measured in calories and work
done is measured in joules. The above relation
then is modified to C,- C, = R/J where J is
mechanical equivalent of heat.

Also C, = MS, and C, = M S, where
M, is the molar mass of the gas and S, and
S, are respective principal specific heats. (In
many books, ¢, and ¢, are used to denote the
principal specific heats). Thus,

M,S,— M,S, =R/

- (3.25)

S, =S, = 107 - (3.27)

Example 3.3: Given the values of the |
two principal specific heats, S, = 3400 call
kg' K* and S,, = 2400 cal kg* K for the
hydrogen gas, find the value of J if the
universal gas constant R = 8300 J kg* K.
Solution: Given

S, = 3400 cal kg™ K™,

S, = 2400 cal kg™ K+,

R =8300J kg* K.

R
S.— S, = u,s fromEq. (3.27)

_ 8300 _
3400 - 2400 = Sy 88 M, =2 for H, gas
8300
2x1000

Example 3.4: The difference between the
two molar specific heats of a gas is 8000 J
kg* K. If the ratio of the two specific heats
is 1.65, calculate the two molar specific
heats.
Solution: Given C
C,—C,=8000Jkg*K'and C—P =1.65.
A%
-.C,=165C, and 1.65C, -C, =8000
Solving these, we get

Hence, j — =4.15J/cal -

C,= % — 12307.69 J kg K* and
C, =8000 + C,, = 20307.69 J kg* K1

It is interesting to use the law of
equipartition of energy and calculate the
specific heat of gases.

(a) Monatomic Gases: For a monatomic gas
enclosed in a container, held at a constant
temperature T and containing N, atoms, each
atom has only 3 translational dof. Therefore,

average energy per atom is %kBT and the total

internal energy per mole is

3
EZENAkBT
..Molar specific heat at constant volume
dE 3 3
C,=—==N,k;==R --- (3.28
Vodr 2 %P2 (3.28)
5
Using Eq. (3.26),C, =5 R --- (3.29)

2
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C, 5

=3 - (3.30)

(b) Diatomig Gases: For a gas consisting of
diatomic molecules such as O,, N,, CO, HCI,
enclosed in a container held at a constant
temperature T, if treated as a rigid rotator,
each molecule will have 3 translational and
2 rotational dof. According to the law of
equipartition of energy, the internal energy of
one mole of gas is
EngAkBTJr%NAkBT:%NAkBT

The molar specific heat at constant
volume will be

5 5
CV = ENAkB = ER 7 === (331)
Using Eq. (3.26), C, = 5 R ---(3.32)
% :&:Z ---(3.33)
C, 5

For diatomic gas containing non rigid
vibrating molecules, internal energy per mole
IS

E:%NAkBT+§NAkBT+§NAkBT
7
= ENAkBT

The molar specific heat at constant

: 7 7
volume will be C, :ENAkB =5R --- (3.34)

9
Using Eq. (3.26), C, = 5 R --(3.35)
C, 9
=—=— ---(3.36
Y c, 7 (3.36)

(c) Polyatomic Gases : Gases which have
molecules containing more than two atoms are
termed as polyatomic gases, e.g., ammonia gas
where each molecule has one N atom and three
H atoms. Each molecule of the polyatomic
gas has 3 translational dof. Only linear
molecules have 2 dof for rotation. All other
polyatomic molecules can perform rotations
about three mutually perpendicular axes
through their center of mass, hence they have
3 dof for rotation also. Polyatomic molecules
have more than 1 dof for different modes of

vibrational motion. The number of dof, f,
for the vibrational motion of a polyatomic
molecule depends on the geometric structure of
the molecule i.e., the arrangement of atoms in
a molecule. Each such dof contributes average

energy 2 x lkBT from kinetic energy and

potential energy terms. Therefore for 1 mole of
a polyatomic gas, the internal energy is

E= %NAkBT+%NAkBT+f x%NAkBT

=3+ )N, kT

and the molar specific heats at constant volume
and constant pressure are given as

C,=(@B+fR --- (3.37)

and C =(@4+f)R --- (3.38)
_& A4+ f

Y= C, —3+f --- (3.39)

) Can you recall? N

1. What are the different modes of transfer
of heat?

2. What are electromagnetic waves?

3. Does heat transfer by radiation need a
material medium?

& J

) Do you know? ~

If a hot body and a cold body are kept in
vacuum, separated from each other, can
they exchange heat? If yes, which mode
of transfer of heat causes change in their
temperatures? If not, give reasons.

&

3.10 Absorption, Reflection and
Transmission of Heat Radiation:

In X1 Std. you have studied that heat can
be transferred by conduction, convection and
radiation. The first two modes of heat transfer
require a material medium for transmission
of heat but radiation does not need a material
medium. The most common example of heat
transfer by the radiation mode that we come
across every day is the transfer of heat and
light from the Sun to the earth and to us. In this
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section, we shall discuss radiation in detail.
As the term ‘radiation’ refers to one mode
of transfer of heat, the term ‘radiation’ also
refers to continuous emission of energy from
the surface of any body because of its thermal
energy. Thisemitted energy is termed as radiant
energy and is in the form of electromagnetic
waves. Radiation is therefore the fastest mode
of transfer of heat. The process of transfer of
heat by radiation does not require any material
medium since electromagnetic waves travel
through vacuum. Heat transfer by radiation
is therefore possible through vacuum as well
as through a material medium transparent to
this radiation. Physical contact of the bodies
that are exchanging heat is also not required.
When the radiation falls on a body that is not
transparent to it, e.g., on the floor or on our
hands, it is absorbed and the body gets heated
up. The electromagnetic radiation emitted by
the bodies, which are at higher temperature
with respect to the surroundings, is known as
thermal radiation.

3.10.1 Interaction of Thermal Radiation
and Matter:

Whenever thermal radiation falls on the
surface of an object, some part of heat energy
is reflected, some part is absorbed and the
remaining part is transmitted.

Let Q be the total amount of thermal
energy incident on the surface of an object
and Q,, Q, and Q, be the respective amounts
of heat absorbed, reflected and transmitted by
the object:

~Q=Q,+Q,.+Q,;
. Q  Q Q
= Xa 4 Xr Xt
dividing by Q, 0 + 0 + 0
Lat+r+t=1 --- (3.40)

o 5] (4] [

are the coefficients of absorption, reflection
and transmission, respectively.

Coefficient of absorption or absorptive
power or absorptivity (a): The ratio of
amount of heat absorbed to total quantity

of heat incident is called the coefficient of
absorption.
Coefficient of reflection or reflectance
(r): The ratio of amount of radiant energy
reflected to the total energy incident is called
the coefficient of reflection.
Coefficient of transmission or transmittance
(t): The ratio of amount of radiant energy
transmitted to total energy incident is called
the coefficient of transmission.

Since all the three quantities a, r and
t are ratios of thermal energies, they are
dimensionless quantities.

Ifr=0anda=0,thent =1, all the incident
energy is transmitted through the object i.e., it
is a perfect transmitter. The object is said to be
completely transparent to the radiation.

Asubstance through which heat radiations
can pass is known as a diathermanous
substance. For a diathermanous body, t # 0. A
diathermanous body is neither a good absorber
nor a good reflector.

Examples of diathermanous substances
are glass, quartz, sodium chloride, hydrogen,
oxygen, dry air etc.

On the other hand, ift =0anda+r =1,
i.e., the object does not transmit any radiation,
it is said to be opaque to the radiation.

Substances which are largely opaque to
thermal radiations i.e., do not transmit heat
radiations incident on them, are known as
athermanous substances.

Examples of athermanous substances are
water, wood, iron, copper, moist air, benzene
etc.

Ift =0anda=0,thenr =1, all the
incident energy is reflected by the object i.e., it
is a perfect reflector. A good reflector is a poor
absorber and a poor transmitter.

If r=0andt =0 then a = 1, all the
incident energy is absorbed by the object. Such
an object is called a perfect blackbody. (We
will discuss this in detail later in this chapter)
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The values of a, r and t_also depend on
the wavelength of the incident radiation, in
addition to the material of the object on which
it is incident. Hence, it is possible that an
object may be athermanous or diathermanous
for certain wavelengths, but is a good absorber
for certain other wavelengths.

3.11 Perfect Blackbody:

A body, which absorbs the entire radiant
energy incident on it, is called an ideal
or perfect blackbody. Thus, for a perfect
blackbody, a = 1. Any surface that absorbs all
the energy incident on it, and does not reflect
any energy, therefore, appears black (unless its
temperature is very high to be self-luminous).
Lamp black or platinum black that absorb
nearly 97% of incident radiant heat, resemble
a perfect blackbody.

) Do you know?

» Can a perfect blackbody be realized in

practice?
» Are good absorbers also good emitters?

Consider two objects, which are opaque
to thermal radiation, having the same
temperature and same surface area. The
surface of one object is well-polished and the
surface of the other object is painted black.
The well-polished object reflects most of the
energy falling on it and absorbs little. On the
other hand, the black painted object absorbs
most of the radiation falling on it and reflects
little. But the rate of emission of thermal
radiation must be equal to rate of absorption
for both the objects, so that temperature is
maintained. Black painted object absorbs
more, hence it must radiate more to maintain
the temperature. Therefore, good absorbers are
always good emitters and poor absorbers are
poor emitters. Since each object must either
absorb or reflect the radiation incident on it, a
poor absorber should be a good reflector and
vice versa. Hence, a good reflector is also a
poor emitter. This is the reason for silvering
the walls of vacuum bottles or thermos flasks.

For the study of radiation, a simple
arrangement illustrated in Fig. 3.4, which was
designed by Ferry, can be used as a perfect
blackbody.

3.11.1 Ferry’s Blackbody:

It consists of a double walled hollow
sphere having tiny hole or aperture, through
which radiant heat can enter (Fig. 3.4). The
space between the walls is evacuated and
outer surface of the sphere is silvered. The
inner surface of sphere is coated with lamp-
black. There is a conical projection on the
inner surface of sphere opposite the aperture.
The projection ensures that a ray travelling
along the axis of the aperture is not incident
normally on the surface and is therefore not
reflected back along the same path. Radiation
entering through the small hole has negligible
chance of escaping back through the small
hole. A heat ray entering the sphere through
the aperture suffers multiple reflections and is
almost completely absorbed inside. Thus, the
aperture behaves like a perfect blackbody. In
a similar construction, Wien used a cylindrical
body with a vertical slit as the aperture.
This gives greater effective area as a perfect
blackbody.

Silver polished
surface ~,

Doubled
/ walled

Conical
projection Incident
radiation
Apert
Surface coated perture
with lamp black

Evacuated space

Fig. 3.4: Ferry’s blackbody.

Similar working can be achieved using
a cavity radiator that consists of a block of
material with internal cavity. The inner and
outer surfaces are connected by a small hole.
The radiation falling on the block that enters
through the hole, cannot escape back from it.
Hence, the cavity acts as a blackbody. When
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the block is heated to high temperature, thermal
radiation is emitted. This is called cavity
radiation and resembles the radiation emitted
by a blackbody. Its nature depends only on the
temperature of the cavity walls and not on the
shape and size of the cavity or the material of
the cavity walls. In the kinetic theory of gases,
we discussed the theory, properties and various
phenomena of an ideal gas rather than dealing
with real gases, similarly it is convenient to
work with an ideal blackbody.

3.12 Emission of Heat Radiation :

In 1792, Pierre Prevost published a theory
of radiation known as theory of exchange of
heat. According to this theory, all bodies at
all temperatures above 0 K (absolute zero
temperature) radiate thermal energy and at
the same time, they absorb radiation received
from the surroundings. The amount of thermal
radiation emitted per unit time depends on
the nature of emitting surface, its area and its
temperature. Hotter bodies radiate at higher
rate than the cooler bodies. Light coloured
bodies reflect most of the visible radiation
whereas dark coloured bodies absorb most of
the incident visible radiation.

For a body, the absorbed radiation
(being energy) increases the kinetic energy
of the constituent atoms oscillating about
their mean positions. You have learnt earlier
that the average translational kinetic energy
determines the temperature of the body, the
absorbed radiation therefore causes a rise in
the temperature of the body. The body itself
also radiates, therefore its energy decreases,
causing lowering of temperature. If a body
radiates more than it absorbs, its temperature
decreases and vice versa. When the rate of
absorption of radiation is same as the rate
of emission of radiation, the temperature
of the body remains constant and the body
is said to be in thermal equilibrium with its
surroundings. You might recall the example

from XI*" Std. of a cup of hot tea (T_ > T __ )
or a plate containing ice (T, < T _ ) kept
on a table, both attain the room temperature
after some time. At room temperature also, all
bodies radiate as well as absorb radiation, but
their rate of emission and rate of absorption
are same, hence their temperature remains
constant. You can therefore infer that hot
bodies would radiate more than cooler bodies.

At room temperature (in fact for
temperatures T lower than  800°C), the
thermal radiation corresponds to wavelengths
longer than those of visible light and hence
we do not see them. When the body is heated,
the radiated energy corresponds to shorter
wavelengths. For temperatures around
800°C, part of the energy emitted is in the
visible range and body appears red. At around
3000°C, it looks white hot. The filament
of a tungsten lamp appears white hot as its
temperature is around 3000 °C

We have thus seen that all bodies
radiate electromagnetic radiation when their
temperature is above the absolute zero of
temperature.

Amount of heat radiated by a body
depends on
» The absolute temperature of the body (T)

e The nature of the body — the material,
nature of surface — polished or not, etc.

» Surface area of the body (A)

e Time duration of for which body emits

radiation (t)

The amount of heat radiated, Q, is
directly proportional to the surface area (A)
and time duration (t). It is therefore convenient
to consider the quantity of heat radiated per
unit area per unit time (or power emitted per
unit area). This is defined as emissive power
or radiant power, R, of the body, at a given
temperature T.

~r=2
. . At .

Dimensions  of emissive power are
[L°M*T=] and SI unit is J m?2 s or W/m2.

The nature of emitting surface, i.e., its
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material or polishing is not a physical quantity.
Hence, to discuss the material aspect, we
compare objects of different materials with
identical geometries at the same temperature.
At a given temperature, a perfect blackbody
has maximum emissive power. Thus it is
convenient to compare emissive power of a
given surface with that of the perfect blackbody
at the same temperature.
3.12.1 Coefficient of Emission or Emissivity:
The coefficient of emission or emissivity
(e) of agiven surface is the ratio of the emissive
power R of the surface to the emissive power
R, of a perfect black surface, at the same
temperature. R

LLe=—
RB

For a perfect blackbody e =1, whereas
for a perfect reflector e=0.

,—C) Use your brain power>ﬁ

*  Why are the bottoms of cooking utensils
blackened and tops polished?

e A car is left in sunlight with all its
windows closed on a hot day. After
some time it is observed that the inside
of the car is warmer than outside air.
Why?

e Ifsurfaces of all bodies are continuously
emitting radiant energy, why do they

L not cool down to 0 K? )

Everyday objects are not ideal
blackbodies. Hence, they radiate at a rate
less then that of the blackbody at the same
temperature. Also for these objects, the rate
does depend on properties such as the colour
and composition of the surface, in addition
to the temperature. All these effects together
are taken care of in the term emissivity e. For
an ordinary body, 0 <e <1 depending on the
nature of the surface, e.g., emissivity of copper
is 0.3. Emissivity is larger for rough surfaces
and smaller for smooth and polished surfaces.
Emissivity also varies with temperature and
wavelength of radiation to some extent.

- (3.41)

3.13 Kirchhoff’s Law of Heat Radiation and
its Theoretical Proof:

Kirchhoff’s law of thermal radiation
deals with wavelength specific radiative
emission and absorption by a body in
thermal equilibrium. It states that at a given
temperature, the ratio of emissive power to
coefficient of absorption of a body is equal to
the emissive power of a perfect blackbody at
the same temperature for all wavelengths.

Since we can describe the emissive power
of an ordinary body in comparison to a perfect
blackbody through its emissivity, Kirchhoff’s
law can also be stated as follows: for a body
emitting and absorbing thermal radiation in
thermal equilibrium, the emissivity is equal to
its absorptivity.
Symbolically,
a(r) =e(n).

Thus, if a body has high emissive power,
it also has high absorptive power and if a
body has low emissive power, it also has low
absorptive power.

Kirchhoff’s law can be theoretically
proved by the following thought experiment.
Consider an ordinary body A and a perfect
blackbody B of identical geometric shapes
placed in an enclosure. In thermal equilibrium,
both bodies will be at same temperature as that
of the enclosure.

Let R be the emissive power of body A,
R, be the emissive power of blackbody B and
a be the coefficient of absorption of body A.
If Q is the quantity of radiant heat incident on
each body in unit time and Q, is the quantity
of radiant heat absorbed by the body A, then
Q, = a Q. As the temperatures of the body A
and blackbody B remain the same, both must
emit the same amount as they absorb in unit
time. Since emissive power is the quantity of
heat radiated from unit area in unit time, we
can write

Quantity of radiant heat absorbed by
body A= Quantity of heat emitted by body A

a = e or more specifically
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or, aQ=R ---(3.42)
For the perfect blackbody B,
Q=R, --- (3.43)
Dividing Eq. (3.42) by Eq.(3.43), we get
a=2
RB
or, X =R, --- (3.44)
a

But i:e from Eqg. (3.41), .. a=e.
RB

Hence, Kirchhoff’s law is theoretically proved.
Can you give two applications of Kirchhoff’s
law in daily life?

3.14 Spectral Distribution of Blackbody
Radiation:

The radiant energy emitted per unit
area per unit time by a blackbody depends
on its temperature. Hot objects radiate
electromagnetic radiation in a large range of
frequencies. Hence, the rate of emission per
unit area or power per unit area of a surface
is defined as a funtion of the wavelength A of
the emitted radiation. At low temperature, the
power radiated is small and primarily lies in
the long wavelength region. As the temperature
is increased, rate of emission increases fast. At
each temperature, the radiant energy contains
a mixture of different wavelengths. At higher
temperatures, the total energy radiated per
unit time increases and the proportion of
energy emitted at higher frequencies or shorter
wavelengths also increases.

Lummer and Pringsheim studied the
energy distribution of blackbody radiation as a
function of wavelength. They kept the source of
radiation (such as a cavity radiator) at different
temperatures and measured the radiant power
corresponding to different wavelengths. The
measurements were represented graphically
in the form of curves showing variation of
radiant power per unit area as a function
of wavelength A at different constant
temperatures as shown in Fig. 3.5. Spectral
distribution of power radiated by a body

indicates the power radiated at different
wavelengths.  Experimental  observations
indicated that the spectral distribution
depended only on the absolute temperature T
of a blackbody and was independent of the
material.

Radiant power

/2

0 500

T T T T T
1000 1500 2000 2500 3000

Wavelength (nm)
Fig. 3.5: Radiant power of a blackbody per unit
range of wavelength as a function of wavelength.

From experimental curves, it is observed
that

1. at a given temperature, the energy is not
uniformly distributed in the spectrum (i.e.,
as a function of wavelength) of blackbody,

2. at a given temperature, the radiant power
emitted initially increases with increase of
wavelength, reachesit’smaximumandthen
decreases. The wavelength corresponding
to the radiation of maximum intensity,
Awex» 1S Characteristic of the temperature
of the radiating body. (Remember, it is not
the maximum wavelength emitted by the
object),

3. areaunder the curve represents total energy
emitted per unit time per unit area by the
blackbody at all wavelengths,

4. the peak of the curves shifts towards
the left — shorter wavelengths, i.e., the
value of 4, decreases with increase in
temperature,

5. at higher temperatures, the radiant power
or total energy emitted per unit time per
unit area (i.e., the area under the curve)
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corresponding to all the wavelengths

increases,

6. at a temperature of 300 K (around room
temperature), the most intense of these
waves has a wavelength of about 5 x
10% m; the radiant power is smaller for
wavelengths different from this value.
Practically all the radiant energy at this
temperature is carried by waves longer
than those corresponding to red light.
These are infrared radiations.

A theoretical explanation of the above
observations could not be given by the then
existing theories. Wien gave an expression
for spectral distribution from laws of
thermodynamics, which fitted the experimental
observations only for short wavelengths. Lord
Rayleigh and Sir James Jeans gave a formula
from the equipartition of energy. This formula
fits well in the long wavelength regions but
tends to infinity at short wavelengths. It was
therefore essential to propose a new model to
explain the behaviour of blackbody. Planck,
being aware of the shortcomings of the two
models, combined the two models using an
empirical formula and could describe the
observed spectrum quite well.

) Do you know? ~

The idea of quantization of energy
was first proposed by Planck to explain
the blackbody spectrum or the -cavity
radiations. Planck proposed a model in
terms of the atomic processes. He considered
the atoms of the walls of the cavity as
tiny electromagnetic oscillators  with
characteristic frequencies that exchange
energy with the cavity. This energy was
supposed to have only specific values
E = nhv, where v is the frequency of
oscillator, h is a universal constant that
has a value 6.626 x 1034 J s and n can take
only positive integral values. The oscillators
would not radiate energy continuously but
only in “jumps” or “quanta” corresponding
_to transitions from one quantized level of

(energy to another of lower energy. As Iong\
as the oscillator is in one of the quantized
states, it does not emit or absorb energy.
This model of Planck turned out to be the
basis for Einstein’s theory to explain the
observations of experiments on photoelectric

\effect, as you will learn in Chapter 14.

3.14.1 Wien’s Displacement Law :

It is observed that the wavelength, for
which emissive power of a blackbody is
maximum, is inversely proportional to the
absolute temperature of the blackbody. This is
Wien’s displacement law.

1

A’maroc_

T

o, 4,. :2
T

s A T =0 --- (3.45)
where b is called the Wien’s constant and its
value is 2.897 x 10°m K. A __ indicates the
wavelength at which the blackbody dominantly
radiates. Thus, it corresponds to the dominant
colour of the radiating body and is a function
of its temperature. You might have heard of
white dwarfs and red giants, white dwarfs are
hot stars with surface temperature ~ 10000 K
while red giants are cooler corresponding to
surface temperature ~ 3000 K.

This law is useful to determine
temperatures of distant stars, Sun, moon etc.

(Example 3.5: Calculate the value of )
A, Tor solar radiation assuming that
surface temperature of Sun is 5800 K
(b =2.897 x10°*m K). In which part of the
electromagnetic spectrum, does this value
lie?

Solution: Given
T=5800Kandb=2.897 x 10°m K.
Using Eq. (3.45),
- 2.897x10° mK
" 5800K
=4.995x10"m =4995 A .
This value lies in the visible region of
{ the electromagnetic spectrum.

J
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) Can you tell? 2

L., the wavelength corresponding to

maximum intensity for the Sun is in the

blue-green region of visible spectrum. Why
L does the Sun then appear yellow to us?

3.15 Stefan-Boltzmann Law of Radiation:

We shall now discuss the temperature
dependence of thermal radiation emitted per
unit time by a blackbody. In 1879, Josef Stefan
proposed an empirical relation between the rate
at which heat is radiated (the radiant power
R) from unit area of a perfect blackbody and
its temperature T, based on the experimental
observations. Five years later, Boltzmann
derived the relation using thermodynamics.
Hence it is known as Stefan-Boltzmann law.
According to this law,“The rate of emission
of radiant energy per unit area or the power
radiated per unit area of a perfect blackbody is
directly proportional to the fourth power of its
absolute temperature”.

RocT*
or, R=cT"* --- (3.46)
where o is Stefan’s constant and is equal
t0 5.67 x 10° J m?stK* or W m? K* and
dimensions of o are [L'M*T3K"].

Thus, the power radiated by a perfect
blackbody depends only on its temperature
and not on any other characteristics such as
colour, materials, nature of surface etc.

If Q isthe amount of radiant energy emitted
in time t by a perfect blackbody of surface area

A at temperature T, thengqu4 .
At

For a body, which is not a blackbody,
the energy radiated per unit area per unit
time is still proportional to the fourth power
of temperature but is less than that for the
blackbody. For an ordinary body,

R=ecT"
where e is emissivity of the surface.

If the perfect blackbody having absolute
temperature T is kept in a surrounding which
is at a lower absolute temperature Ty, then

- (3.47)

the energy radiated per unit area per unit time
= GT4

Energy absorbed from surroundings per
unit area per unit time = oT,’*

Therefore net loss of energy by perfect
blackbody per unit area per unit time
=oT'-0oT)'= o(T* —TO4 ).

For an ordinary body, net loss of energy per
unit area per unit time = eG(T4 —7})4) .

On the other hand, if the body is at a
temperature lower than the surrounding i.e., T
< T, then eG(TO4 —T“) will be the net gain
in thermal energy of the body per unit area per
unit time.

Since the loss or gain of energy per unit
area per unit time is proportional to the fourth
power of absolute temperature, this law is very
significant in deciding the thermal equilibrium
of physical systems. If the absolute temperature
of a body is doubled, the power radiated will
increase by a factor of 24 = 16. Or if a body
radiates with some rate at room temperature
(300 K), the rate will double even if we increase
the temperature of the body by 57 °C.

Example 3.6: Calculate the energy radiated
in one minute by a blackbody of surface
area 200 cm?at 127 °C (o = 5.7 x 108 m?
sTK™A).
Solution: Given
A =200 cm? =200 x 10* m?,
T=127°C = (127+273) K = 400 K,
t=1min=60s
We know that energy radiated is given by
Q=oc AtT*
=5.7x10% x 200 x 10“x 60x (400)*
=5.7x 1.2 x 256
=1751.04]
Example 3.7: A60 watt filament lamp loses
all its energy by radiation from its surface.
The emissivity of the surface is 0.5. The
area of the surface is 5 x 10° m?. Find the
temperature of the filament (o =5.67 x 108J
m2st K.

e L~



.

Solution: Given,e=0.5,A= 5x 10°m?

d
—? =60 W =60 J s

d
d
We know that d_? —ec AT*

-.60=0.5x5.67x108x5x10°x T4

T4 60x10"

5.67x2.5

T*= 423 x 10%®
~T= (42.3><1o'2)%*
T =255 x 10%=2550K
Example 3.8: Compare the rate of loss of
heat from a metal sphere at 827 °C with the
rate of loss of heat from the same sphere at
427 °C, if the temperature of the surrounding
is 27 °C.
Solution: Given,
T,=827°C =827 +273=1100 K,
T,=427°C =427+ 273 =700 K and
T,=27 °C=27+273=300 K

R =(‘2—?1 —ec A(T; - T))

R, =(%l =ec A(T,! - T;))

- (1*-7') 1100* 300

, (n'-1*) 700" -300°
R 14560 182

R, 2320 29

o R R, =182:29

Example3.9: Assumingthatthetemperature
at the surface of the Sun is 6000 K, find out
the size of a virtual star (in terms of the size
of Sun) whose surface temperature is 3000
K and the power radiated by the virtual star
is 25 times the power radiated by the Sun.
Treat both, the Sun and virtual star as a
blackbody.

Solution: Given,

T,,, = 6000 K,

S

T, = 3000 K,

star

P_=25xP

star Sun

Power radiated by the Sun

=

|

~\

e N\

= PSun = (d_Qj
dt Sun

Power radiated by the virtual star

=cA. T} =cdrr’ T}

Sun ~ Sun Sun~ Sun

= star = @ :o-AstarT;fqr = 0'47'[7'3301, T;?ar
dt star
.. PSt(]I‘ - 0-47T7'512ur];?ar — ”Sf(]l‘30004 = 25
f)Sun 6471'7"52““ TSA:m rszun 60004
r. 6000*
S =25% - =400
K2 3000
or, I’star = 20 X rSun
\. J

C) Internet my friend%

o https://www.britannica.com/science/
kinetic-theory-of-gases

e https://www.youtube.com/
watch?v=XrAktUy3_3k

e https://www.youtube.com/
watch?v=3tD7ZugaZik

* https://www.youtube.com/
watch?v=7BXvcOW97iU

» https://chem.libretexts.org/Bookshelves/
Physical_and_Theoretical_Chemistry
Textbook _Maps/Map%3A_Physical _
Chemistry (McQuarrie_and _
Simon)/01%3A_The_Dawn_of_
the_Quantum_Theory/1.01%3A _
Blackbody Radiation_Cannot_Be_
Explained_Classically

» http://hyperphysics.phy-astr.gsu.edu/
hbase/Kinetic/kinthe.html

* https://www.youtube.com/
watch?v=QsadaAdpHfy

e https://www.youtube.com
watch?v=buPuKAcKgZw
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1. Choose the correct option.

i)

i)

In an ideal gas, the molecules possess

(A) only kinetic energy

(B) both kinetic energy and potential
energy

(C) only potential energy

(D) neither kinetic energy nor potential

energy

The mean free path A of molecules is

given by

(A)

wnd?

1
©C)——=—— \/7”” (D) Jornd
where n is the number of molecules per
unit volume and d is the diameter of the
molecules.

If pressure of an ideal gas is decreased
by 10% isothermally, then its volume
will

(A) decrease by 9%

(B) increase by 9%

(C) decrease by 10%

(D) increase by 11.11%

Ifa=0.72 and r = 0.24, then the value of
t is

(rA) 0.02 (B)0.04 (C)0.4 (D)O0.2
The ratio of emissive power of perfectly
blackbody at 1327 °C and 527 °C is
(A)4:1 (B)16:1 (C)2:1 (D)8:1

2. Answer in brief.

i)

What will happen to the mean square
speed of the molecules of a gas if the
temperature of the gas increases?

On what factors do the degrees of
freedom depend?

Write ideal gas equation for a mass of
7 g of nitrogen gas.

If the density of oxygenis 1.44 kg/miat a
pressure of 10°N/m?, find the root mean
square velocity of oxygen molecules.

v)

3.

12.

Define athermanous substances and
diathermanous substances.
When a gas is heated its temperature
increases. Explain this phenomenon
based on kinetic theory of gases.
Explain, on the basis of kinetic theory,
how the pressure of gas changes if
its volume is reduced at constant
temperature.
Mention the conditions under which a
real gas obeys ideal gas equation.
State the law of equipartition of energy
and hence calculate molar specific heat
of mono- and di-atomic gases at constant
volume and constant pressure.
What is a perfect blackbody ? How can
it be realized in practice?
State (i) Stefan-Boltmann law and (ii)
Wein’s displacement law.
Explain  spectral  distribution  of
blackbody radiation.
State and prove Kirchoff’s law of heat
radiation.
Calculate the ratio of mean square
speeds of molecules of a gas at 30 K and
120 K.

[Ans: 1:4]
Two vessels A and B are filled with
same gas where volume, temperature
and pressure in vessel A is twice the
volume, temperature and pressure in
vessel B. Calculate the ratio of number
of molecules of gas in vessel Ato that in
vessel B.

[Ans: 2:1]
A gas in a cylinder is at pressure P. If
the masses of all the molecules are made
one third of their original value and
their speeds are doubled, then find the
resultant pressure.

[Ans: 4/3 P]
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14.

15.

16.

17.

18.

19.

20.

Show that rms velocity of an oxygen
molecule is /2 times that of a sulfur
dioxide molecule at S.T.P.
At what temperature will oxygen
molecules have same rms speed as
helium molecules at S.T.P.? (Molecular
masses of oxygen and helium are 32 and
4 respectively)
[Ans: 2184 K]
Compare the rms speed of hydrogen
molecules at 127 °C with rms speed of
oxygen molecules at 27 °C given that
molecular masses of hydrogen and
oxygen are 2 and 32 respectively.
[Ans: 8:4/3]
Find kinetic energy of 5 litre of a gas at
S.T.P. given standard pressure is 1.013 x
10° N/m?2,
[Ans: 0.7597]
Calculate the average molecular kinetic
energy (i) per kmol (ii) per kg (iii) per
molecule of oxygen at 127 °C, given that
molecular weight of oxygen is 32, R is
8.31 J mol* K and Avogadro’s number
N, is 6.02 x 10 molecules mol™.
[Ans: 4.986 x 10°J, 1.56 x 10%J
8.28 x 10%]]
Calculate the energy radiated in one
minute by a blackbody of surface area
100 cm?when it is maintained at 227 °C.
[Ans: 2126.25 J]
Energy is emitted from a hole in
an electric furnace at the rate of 20 W,
when the temperature of the furnace is
727 °C. What is the area of the hole?
(Take Stefan’s constant ¢ to be 5.7 x
108 J st m2K*)
[Ans: 3.5 x 10 m?]

21.

22.

23.

24.

25.

The emissive power of a sphere of area
0.02 m? is 0.5 kcal s* m?. What is the
amount of heat radiated by the spherical
surface in 20 second?

[Ans: 0.2 kcal]
Compare the rates of emission of heat by
a blackbody maintained at 727 °C and at
227°C, if the blackbodies are surrounded
by an enclosure (black) at 27 °C. What
would be the ratio of their rates of loss of
heat ?

[Ans: 18.23:1]
Earth’s mean temperature can be
assumed to be 280 K. How will the curve
of blackbody radiation look like for this
temperature? Find out A__. In which
part of the electromagnetic spectrum,
does this value lie?
[Ans: 1.035 x 10°°m, microwave region]
A small-blackened solid copper
sphere of radius 2.5 cm is placed in an
evacuated chamber. The temperature of
the chamber is maintained at 100 °C. At
what rate energy must be supplied to the
copper sphere to maintain its temperature
at 110 °C? (Take Stefan’s constant ¢ to
be 5.76 x 10® J s m?2 K*and treat the
sphere as blackbody.)

[Ans: 0.962 W]
Find the temperature of a blackbody if
its spectrum has a peak at (a) A, =700
nm (visible), (b) 2, =3 cm (microwave
region) and (c) A__ = 3 m (FM radio
waves) (Take Wien's constant b = 2.897
x 10° m K).

[Ans: (a) 4138 K, (b) 0.0966 K,
(c) 0.966 x 103 K]

koK



4. Thermodynamics

C) Can you recall? \

1. When a piece of ice is placed in water
at room temperature, the ice melts
and water cools down. Why does their
temperature change?

2. When water boils, why does its
temperature remains constant?

3. When an inflated balloon is suddenly
burst, why is the emerging air slightly
cooled?

& J

4.1 Introduction:

In XI" Std. we have studied thermal
properties of matter. In this chapter, we shall
study the laws that govern the behavior of
thermal energy. We shall study the processes
where work is converted into heat and vice
versa.

When we drive a vehicle, its engine gets
warmer after some time. Similarly, when we
exercise, we also feel warmth in our body.
Similar physics is involved in both the cases.
The engine of a vehicle as well as our muscles
do some work and both produce some heat. It
is, therefore, natural to think that if the work
done by an engine or our muscles produces
some heat then heat should also be able to
‘do” some work. Thermodynamics is mostly
the study of conversion of work (or any form
of energy) into heat and the other way round.

When a hot object is in contact with a
cold object, we notice that both objects reach
the same temperature after some time. The hot
object gets cooler and the cold object becomes
warmer. That means something is exchanged
between the two objects. This ‘something’ is
heat. According to modern theory, heat is a
form of energy.

In the year 1798 it was observed by
Benjamin Thomson, a British scientist, that
tremendous heat is produced when brass
canons were bored. The heat thus produced

was large enough to boil water. A very
important observation was that the amount of
heat produced was related to the work done
in turning the drill that was used to bore the
canon. It was also noticed that more heat was
produced when the drill bored for a longer
time. It did not depend on the sharpness of the
drills used. Asharper drill would have removed
more heat according to the older theory of heat,
which assumed heat to be some form of a fluid.
This observation could be explained only if
heat was a form of energy and not any fluid. It
is natural to conclude from these observations
that energy can be converted from one form
to another form. In this particular case, a very
important law of physics can be proposed that,
‘the work done by a system is converted into
heat’. (The drills used to bore the canons ‘do’
the work and the canons get heated up).

This was, probably, one of the
pioneer experiments in thermodynamics.
Thermodynamics is the branch of physics that
deals with the concepts of heat and temperature
and the inter-conversion of heat and other
forms of energy.

It is the field of study that allows us to
understand nature of many of the fundamental
interactions in the universe. It can explain
phenomena as simple as water boiling in a
vessel, and also something as complex as the
creation of a new star. Thermodynamics is
an important branch of physics having many
practical applications.

In this chapter we will try to understand
a thermodynamic system, thermodynamic
variables, thermodynamic processes and the
laws that govern these processes. We will
also study the most important and useful
applications of thermodynamics, the heat
engines and their efficiency.
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4.2 Thermal Equilibrium:

The thermal properties of materials
discussed in XI" Std. are useful to understand
the behaviour of a material when it is heated
or cooled. When you put a piece of ice in
water at room temperature, the ice melts. This
is because the water at room temperature
(higher than the ice temperature) transfers
its heat to ice and helps ice melt. Similarly,
when hot water is mixed with cold water, it
transfers its heat to the cold water. The hot
water cools down. In both these examples, we
notice that the two components reach a stage
where there is no more transfer of heat. In such
cases, we assume that heat is something that
is transferred from a substance at a higher
temperature to that at a lower temperature.
This transfer continues till the level of heat
content in both the substances is the same. Then
we say that a thermal equilibrium is reached
between the two substances. We can say that
when two objects are at the same temperature,
they are in thermal equilibrium. This concept
of thermal equilibrium is used in the Zeroth
Law of thermodynamics. It is called the Zeroth
Law because it was proposed after the First
and the Second laws of thermodynamics were
formulated.

) Remember this> ~

Thermal equilibrium: Two systems in

thermal contact with each other are in

thermal equilibrium if they do not transfer
g heat between each other.

J

) Can you tell? 2

Why different objects kept on a table at
room temperature do not exchange heat
with the table?

4.3 Zeroth Law of Thermodynamics:

The Zeroth law is very important as it
helps us to define the concept of a temperature
scale. The formal statement of the Zeroth law
of thermodynamics is as follows:

J

"If two systems are each in thermal
equilibrium with a third system, they are also
in thermal equilibrium with each other".

\ / .
. —
—[d

Fig. 4.1: Schematic representation of Zeroth
law of thermodynamics.

Figure 41 shows a schematic
representation of the Zeroth law of
thermodynamics. The double arrow represents
thermal equilibrium between systems. |If
system Aand C are in thermal equilibrium, and
systems A and B are in thermal equilibrium,
then systems B and C must be in thermal
equilibrium. Then systems A, B and C are at
the same temperature.

For example, when we use a thermometer
to measure temperature of an object, we use
the same principle. When the thermometer
and the object are in thermal equilibrium, the
thermometer indicates the temperature of the
object. The zeroth law, therefore, enables us to
use a thermometer to compare the temperatures
of different objects. This is schematically
shown in the Fig 4.2. It also implies that
temperature is a measurable quantity. The
science of measuring temperatures is called
Thermometry  which involves different
temperature scales and methods of measuring
temperature. This is already discussed in XI
Std.

Thermometer

|

Fig. 4.2: Concept of temperature measurement.

) Remember this>

The Zeroth Law of Thermodynamics
states that systems in thermal equilibrium
are at the same temperature.

e TE



) Can you tell?

Why is it necessary to make a physical
contact between a thermocouple and the
object for measuring its temperature?
4.4 Heat, Internal Energy and Work:
Earlier in this chapter, we saw that
when two substances, initially at different
temperatures, are brought in contact with each
other, the substance at higher temperature loses
its heat and the substance at lower temperature
gains it. We did not discuss the reasons why
any substances can “have’ that heat and what
exactly is the nature of the heat content of that
substance. The examples we discussed in the
previous section and in chapter 7 (XI" Std.),
help us understand the transfer of heat from
one body to the other. But they do not help us
in explaining why the action of rubbing our
palms together generates warmth, or why an
engine gets warmer when it is running. These
and similar phenomena can be explained on
the basis of the concept of the internal energy
of a system, the conversion of work and heat
into each other and the laws governing these
inter conversions.

4.4.1 Internal Energy:

We know that every system (large
or small) consists of a large number of
molecules. Internal energy is defined as
the energy associated with the random,
disordered motion of the molecules of a system.
It is different than the macroscopic ordered
energy of a moving object. For example, a
glass of water kept on a table has no kinetic
energy because it is not moving. Its potential
energy can also be taken as zero. But we
know, from the kinetic theory, that the water
molecules in the glass at the given temperature
move at a random speed. Thus, we can say
that, the internal energy of a substance is the
total energy of all its atoms/molecules.

For an ideal monatomic gas such as argon,
the internal energy is just the translational

Kinetic energy of the atoms having a linear
motion. (Discussed in Chapter 3). For a
polyatomic gas such as carbon di-oxide,
we consider the rotational and vibrational
kinetic energy of the molecules in addition
to their translational kinetic energy. In case
of liquids and solids, we need to consider the
potential energy of the molecules due to the
intermolecular attractive forces amongst them.
Remember this is again at the molecular level
(microscopic scale) only. This internal energy
of a system is denoted by U .

e a

Example 4.1: Calculate the internal energy
of argon and oxygen.

Solution: Arogon is a monatomic gas.
Internal energy of a gas depends only on
its temperature. Hence, its internal energy
is given by 3/2 KT. Oxygen is a dia-atomic
gas its internal energy is 5/2 KT.

|\ J

442  Thermodynamic  system  and
Thermodynamic Process:

Surrounding

(Environment)

Bound
oundary

Figure 4.3 (a): a system, its boundary and
environment.

Let us understand what is meant by a
thermodynamic system and a thermodynamic
process first.

A thermodynamic system is a collection
or a group of objects that can form a unit which
may have ability to exchange energy with its
surroundings. Anything that is not a part of the
system is its surrounding or its environment.
For example, water kept in a vessel is a system,
the vessel is its boundary and the atmosphere
around it is its surrounding. Figure 4.3 (a)
shows this schematically.

Thermodynamic systems can be classified
on the basis of the possible transfer of heat and
matter to environment. Based on this, they are

T AV



classified as open, closed or isolated systems.

An open system is a system that freely
allows exchange of energy and matter with its
environment. For example, water boiling in a
kettle is an open system. Heat escapes into the
air. This is the exchange of energy with the
surroundings. At the same time, steam also
escapes into the air. This is exchange of matter
with the surroundings.

A closed system, on the other hand, does
not allow the exchange of matter but allows
energy to be transferred. For example, water
boiling in a boiler is a closed system. It allows
heat (energy) to be transferred from the source
of heat (a burner) to the water (system) inside.
Similarly, heat is also transferred to the
surroundings. Steam (matter) is not allowed to
escape as long as the valve is kept closed.

An isolated system is completely sealed
(isolated from its environment). Matter as
well as heat cannot be exchanged with its
environment. Athermos flask is a very familiar
example of an isolated system.

Figure 4.3 (b) shows an open system,
a closed system, and an isolated system
schematically.

Heat | + Matter Heat

Closed system

Open system Isolated system
Figure 4.3 (b): Thermodynamic systems; open
system, closed system, and isolated system.

A thermodynamic process is a process in
which the thermodynamic state of a system is
changed. For example, water contained in a
vessel with a lid on it is an open system. When
the pot is heated externally, water starts boiling
after some time and steam is produced which
exerts pressure on the walls of the vessel. In
this case, the state of the water in the container
is changed. This is because, the temperature
(T), the volume (V), and the pressure (P) of

the water inside the vessel change when it
starts boiling. Thus, we can describe the state
of a system by using temperature, pressure and
volume as its variables. We will discuss these
in some details at a later stage in section 4.5.1.
4.4.3 Heat:

Let us now try to understand heat and its
relation with the internal energy of a system.
Consider a glass filled with water on a table.
The glass, along with the water in it forms a
system. Let the temperature of this system be
T . The table on which the glass is kept and
the other relevant parts of the room will then
be its surrounding or the environment. Let the
temperature of the environment be 7,. We
notice that if T, and T, are not the same, then
Ts will change until both the temperatures are
equal and athermal equilibrium will be reached
between the ‘system’ and the ‘environment’.
T will also change to some extent, but the end
resultis that the ‘system’ and the ‘environment’
reach thermal equilibrium. If the environment
is very large, the change in7, may not be
measurable, but certainly not zero.

Such a change in temperature is caused
by the transfer of internal energy between the
system and its environment. In this case, the
transfer of energy is between the glass of water
and its surrounding.

C) Remember this> ~

When transfer of energy takes place
between a system and its environment, we
observe the following conventions.

1. When the energy is transferred to
a system from its environment, it
is positive. We say that the system gains
(or absorbs) energy.

2. When the energy is transferred from
the system to its environment, it
IS negative. We say that the system
loses (or releases) energy.

\ & J
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Environment (7)

Q>0

T<T,
Fig. 4.4 (a): Energy flows into the system.
Consider Fig. 4.4 which shows energy
transfer between a system and its environment.
Let 7, and 7, bethetemperatures of the system
and its environment respectively. Let Q be the
energy transferred between the system and
its environment. As shown in Fig. 4.4 (a),
T, >T,, the system gains energy, and Q is

positive. Environment (7})

Q<0

T>T,
Fig. 4.4 (b): Energy flows from the system.

In Fig. 4.4 (b), T <T, the system loses
energy, and Q is negative. In Fig.4.4 (c),
T, =T}, the system and the environment are in
thermal equilibrium and there is no transfer of

energy (Q =0).

Environment (77)
Q=0

T=T,
Fig. 4.4 (c): No transfer energy.

Using these observations, we can now
define heat as the energy that is transferred
(between the system and its environment) due
to a temperature difference that exists between
the two. Itis denoted by Q.

4.4.4 Change in Internal Energy of a System:

In the previous discussion we have seen
that the internal energy of a system can be
changed (it can be gained or released) due to
exchange with its environment. Now we will
try to understand how this transfer of energy
between a system and its environment is
possible. Consider the following experiment.
Figure 4.5 (a) shows a cylinder filled with

some gas in it. This cylinder is provided with
a movable, massless, and frictionless piston at
one end as shown. The gas inside the cylinder
Is our system and the rest is its environment.
Let the temperature of the gas be T, and that
of the environment be T_.

Internal energy of the system (the gas) can

be changed in two different ways or by both.
Final state

T=200C

Heat supplied

AN
” to gas (Q)

T=100C

Initial state

Burner

Fig. 4.5: (a) Change ininternal energy of a system
can be brought about by heating the system.

1) The cylinder can be brought in contact with
a source of heat such as a burner as shown
in Fig. 4.5.(a). As discussed previously, the
temperature difference between the source of
heat (environment) and the system will cause
a flow of energy (heat) towards the gas in the
cylinder. This is because 7, > 7. Thus, there
will be an increase in the internal energy of
the gas. Such exchange of energy is possible
in another way also. If the surrounding is at
temperature lower than the gas, 75 > 7}, the
gas will lose energy to its environment and

cool down.

Initial state
d

Work done Final state

on gas .’I Y
= |
L=

T=100C

Fig.4.5: (b) Change in internal energy of a system
can be brought about by doing some work on it.

ii) The other way to increase the internal energy
of the gas is to quickly push the piston inside
the cylinder, so that the gas is compressed, as

T=200C

",\,,\,



shown in Fig. 4.5.(b). In this case, we know
that the piston does some work on the gas in
moving it through some distance. The gas
gains energy and its temperature is increased.
On the other hand, if the gas pushes the piston
out, so that the gas is expanded, some work is
done by the gas. It loses some of its energy and
the gas cools down.

) Use your brain power

Why is there a change in the energy of a gas
when its volume changes?

Thus, we see that the internal energy
of a system can be changed in two different
ways, 1) by heating it or 2) by doing work on
it. The experiment we discussed just now can
be carried out in a very meticulous way so that
we achieve the same change in temperature of
the gas by both the methods.

Conclusion of this experiment leads us to
a very important principle of thermodynamics.
It is related to the work done on the system
(or, by the system) and the change in the
internal energy of the system. Both are related
through the energy that is transferred to (or,
by) the system and the heat that is involved in
the process. This leads us to the First Law of
Thermodynamics.

) Can you recall? N

During the middle of nineteenth century,
James Joule showed that mechanical work
done and the heat produced while doing
that work are equivalent. This equivalence
is the mechanical equivalent of heat. The
relation between the mechanical work W
and the corresponding heat produced H is
W =J x H. The constant J is the mechanical

{ equivalent of heat.

J

4.5 First Law of Thermodynamics: (Work
and Heat are related)

The first law of thermodynamics gives the
mathematical relation between heat and work.

4.5.1 First Law of Thermodynamics

Consider a very common thermodynamic
system which consists of some quantity of an
ideal gas enclosed in a cylinder with a movable,
massless, and frictionless piston. Figure 4.6
shows such arrangement. In this, the gas inside
the cylinder is the system and the cylinder
along with the piston is its environment.

At this stage, we will tentatively base
our discussion on the basis of the kinetic
theory, that is, the microscopic description of
a system. It is important to keep in mind that
a thermodynamic system can be completely
described onthebasisofthe macroscopic model.
(We will discuss it briefly at a later stage).

Piston moves out

Motion of piston
—_—>

[ D

o
< After

Fig. 4.6 (a): Positive work done by a system.

First, consider the work done by the
system (the gas) in increasing the volume of
the cylinder. During expansion, (Fig.4.6 (a))
the gas molecules which strike the piston lose
their momentum to it, and exert a pressure
on it. As a result, the piston moves through a
finite distance. The gas does a positive work on
the piston. When the piston is pushed in so that
the volume of the gas decreases, (Fig.4.6 (b))
the gas molecules striking it gain momentum
from the piston. The gas does a negative work

on the piston.
Piston moves in

Motion of piston
@

<— After

Fig. 4.6 (b): Negative work done by a system.
Consider Fig. 4.7 which shows a system

enclosed in a cylinder with a movable,
massless, and frictionless piston so that its

IV



volume can change. Let the cross sectional
area of the cylinder (and the piston) be A, and
the constant pressure exerted by the system
on the piston be p. The total force exerted by

System
e) —

Force that system exerts on piston
Fig.4.7: A system enclosed in a cylinder.
the system on the piston will be F = pA. If

the piston moves through an infinitesimal (very
small) distance dx, the work done by this force is,
dW = pdV
But Adx = dV, the infinitesimal change
in the volume of the cylinder. Hence, the
work done by the system in bringing out this
infinitesimal change in the volume can be
written as,
dW = pdVv ---(4.1)
If the initial volume of the cylinder is
V. and its volume after some finite change is
V., then the total work done in changing the
volume of the cylinder is,

W= jpdV p(v,-7)

The change i |n volume in this case is small.

- (4.2)

(Example 4.2 : Agas enclosed in a cyllnder\
is expanded to double its initial volume at a
constant pressure of one atmosphere. How
much work is done in this process?.

Solution : Given: Pressure of one atmosphere
p = 1.01x10° Pa, change in volume
(V,-V,)= 05.

W=p(V,-V,)=1.01x10° (+0.5)

=0.505 x 10° = 5.05 x 10°J
Is this work done on the gas or by the gas?
How do you know this?

& J

Now we know that the internal energy of
a system can be changed either by providing
some heat to it (or, by removing heat from it)
or, by doing some work on it (or extracting

work from it). Equation (4.2) gives the amount
of work done in changing the volume of a
system.

When the amount of heat Q is added to
the system and the system does not do any
work during the process, its internal energy
increases by the amount, AU = Q. On the other
hand, when the system does some work to
increase its volume, and no heat is added to it
while expanding, the system loses energy to its
surrounding and its internal energy decreases.
This means that when W is positive, AU is
negative and, vice versa. Therefore, we can
write, AU =-W.

In practice, the internal energy can change
by both the ways. Therefore, we consider
the effect of both together and write the total
change in the internal energy as,

AU =Q -W --- (4.3)

This is the mathematical statement of the
first law of thermodynamics. This equation
tells that the change in the internal energy of
a system is the difference between the heat
supplied to the system and the work done by
the system on its surroundings.

We can rearrange the Eq. (4.3) and write,

Q=AU +W --- (4.4)

Thisisalsothefirstlawofthermodynamics.
Both forms of the law are used while studying
a system. Equation (4.4) means that when the
amount of heat Q is added to a system, its
internal energy is increased by an amount AU
and the remaining is lost in the form of work
done W on the surrounding.

rC) Can you tell? ~

Can you explain the thermodynamics
involved in cooking food using a pressure
\cooker?

e N

Example 4.3 : 1.0 kg of liquid water is
boiled at 100 °C and all of it is converted
to steam. If the change of state takes place
at the atmospheric pressure (1.01 x10°Pa),
calculate (a) the energy transferred to the
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system, (b) the work done by the system
during this change, and (c) the change
in the internal energy of the system.
Given, the volume of water changes from
1.0 x 10°m? in liquid form to 1.671 m?
when in the form of steam.
Solution : (a) Liquid water changes
to steam by absorbing the heat of
vaporization. In case of water, this is
Q=Lm
kJ

~Q= (2256k—gJ-(1.0kg) =2256k]
(b) The work done can be calculated by
using Eq. (4.1). Here, the pressure is
1.01x10°Pa and the change in volume is
dV =(1.671 m*- 1.0x10°m3)

The work done is,
W = pdV = (1.01x10°%Pa) x (1.671 m3
-1.0x10° m3)

=1.69x10° J = 169kJ

(c) Change in the internal energy of the
system can be calculated by using Eq. (4.3).
AU=Q-W

= 2265 kJ - 169 kJ = 2096 kJ

This energy is positive which means
that there is an increase in the internal
energy of water when it boils. This energy
is used to separate water molecules from
each other which are closer in liquid water
than in water in vapour form.

Can you explain how the work done
by the system is utilized?

& J/

The quantities W and Q can be positive,
negative or zero, therefore, AU can be positive,
negative, or zero. Figure 4.8 shows these three

cases. Figure 4.8. (a) shows the case when
0 =200J W=100]
D>

system

AU= Q- W=+100]
Fig. 4.8 (a) : Increase in internal energy
(AU > 0).

more heat is added to the system than the
work done by it. The internal energy of the
system increases, (AU > 0). Figure 4.8. (b)

0 =-200J W= -100J

AU=Q - W=-100J
Fig. 4.8 (b): Decrease in internal energy
(AU <0)
shows the case when more work is done by the

system than the heat added to it. In this case,
the internal energy of the system decreases,
(AU < 0). Figure 4.8.(c) shows the case when
heat added to the system and the work done
by it are the same. The internal energy of the
system remains unchanged, (AU = 0).

Q=200 W = 2001
AU=0-W=0
Fig. 4.8 (c): No change in internal energy

(AU = 0)
The law of conservation of energy we

studied in XI" Std. was applicable to an
isolated system, i.e., to a system in which there
is no exchange of energy. The first law of
thermodynamics, Eq. (4.3) and Eq. (4.4) is an
extension of the law of conservation of energy
to systems which are not isolated, i.e., systems
that can exchange energy. This exchange can
be in the form of work W, or heat Q. The first
law of thermodynamics is thus a generalization
of the law of conservation of energy.

We started this discussion on the basis
of the microscopic view (kinetic theory) of
internal energy. In practice, this is not useful
because it does not help us in calculating the
internal energy of a system. In physics, we
need some measurable quantities so that the
internal energy of a system can be measured,
though indirectly. Equation (4.3), AU Q - W,
provides this method. The internal energy

IV



appears as the difference between the heat Q
supplied to (or released by) the system and
the work W done by (or done on) the system.
Both are measurable quantities. In physics,
we generally discuss volume expansion of a
gas when heat is added to it. In this case, the
heat added and the resulting expansion of the
gas can be measured. The expansion of a gas
to do work in moving a piston in an internal
combustion engine can also be measured.

Ve

Example 4.4: 104 kJ of work is done on\
certain volume of a gas. If the gas releases
125 kJ of heat, calculate the change in
internal energy (in kJ) of the gas.

Solution: We know from the first law of
thermodynamics that AU =Q -W

Given, W = 104 kJ. This work is done on
the gas, hence we write W = - 104 kJ.
Similarly, the heat is released by the gas
and we write Q = - 125 kJ.

Therefore, from the first law of
thermodynamics, we have,
AU = Q] - |W|

- AU = (125 - 104) = 21 k]

r‘C) Remember this> ~

The first law of thermodynamics gives the
relationship between the heat transfer, the
work done, and the change in the internal
energy of a system.

(&

4.6 Thermodynamic state variables

Earlier, we have discussed thermal
equilibrium and understood the concept
of temperature and the Zeroth law of
thermodynamics. Thermodynamics is not
the study of changes in temperature of a
system only. As we have seen earlier, when
temperature of a system changes (it gains or
releases energy), its other properties can also
change. Let us understand these properties.
We will define the term property of a
thermodynamic system first.

Property of a system or a system variable:

It is any measurable or observable
characteristic or property of a system when
the system remains in equilibrium. A property
is also called a state variable of the system.
We will use the term variable to describe
characteristic of a system. For example,
pressure, volume, temperature, density and
mass of a system are some of the variables
that are used to describe a system. These
are measurable properties and are called
macroscopic variables of a system.

Intensive and Extensive variables:

Intensive variables do not depend on the
size of the system. Extensive variables depend
on the size of the system. Consider a system
in equilibrium. Let this system be divided into
two equal compartments, each with half the
original volume. We notice that the pressure
p, the temperature T, and the density p are
the same in both compartments. These are
intensive variables. The total mass M, and the
internal energy U of the system are equally
divided in the two compartments and are
extensive variables of the system.

4.6.1 Thermodynamic Equilibrium:

Asystem is in thermodynamic equilibrium

if the following three conditions of equilibrium
are satisfied simultaneously.  These are,
1) Mechanical equilibrium, 2) Chemical
equilibrium, and 3) Thermal equilibrium.
1) Mechanical equilibrium: When there are
no unbalanced forces within the system and
between the system and its surrounding, the
system is said to be in mechanical equilibrium.
The system is also said to be in mechanical
equilibrium when the pressure throughout
the system and between the system and its
surrounding is the same. Whenever some
unbalanced forces exist within the system,
they will get neutralized with time to attain
the condition of equilibrium. A system is in
mechanical equilibrium when the pressure in
it is the sane throughout and does not change
with time.
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2) Chemical equilibrium: A system is said to
be in chemical equilibrium when there are no
chemical reactions going on within the system,
or there is no transfer of matter from one part
of the system to the other due to diffusion. A
system is in chemical equilibrium when its
chemical composition is the sane throughout
and does not change with time.

3) Thermal equilibrium: When the
temperature of a system is uniform throughout
and does not change with time, the system is
said to be in thermal equilibrium. We have
discussed thermal equilibrium at length earlier.

Activity \

Identify different thermodynamic systems
and study their equilibrium. Classify
them in to one of the categories we just
_ discussed. )
4.6.2 Thermodynamic State Variables and
Equation of State

Every  equilibrium  state of a
thermodynamic system is completely described
by specific values of some macroscopic
variables, also called state variables. For
example, an equilibrium state of a gas is
completely described by the values of its
pressure p, volume V, temperature T, and mass
m. Consider a mixture of gases or vapours as
in case of the fuel in an automobile engine. Its
state can be described by the state variables
but we also need its composition to describe
its state.

Fig. 4.9: Non equilibrium state.

A thermodynamic system is not always in
equilibrium. Figure 4.9 shows such case. For
example, when an inflated ball is punctured,
the air inside it suddenly expands to the
atmosphere. This is not an equilibrium state.
During the rapid expansion, pressure of the

air may not be uniform throughout. Similarly,
the fuel (a mixture of petrol vapour) in the
cylinder of an automobile engine undergoing
an explosive chemical reaction when ignited
by a spark is not an equilibrium state. This
Is because its temperature and pressure are
not uniform. Such system which is not in
equilibrium cannot be described in terms of
the state variables. Eventually, the air in first
case, and the fuel in the second case reach a
uniform temperature and pressure and attain
thermal and mechanical equilibrium with its
surroundings. Thus it attains thermodynamic
equilibrium.

In simple words, thermodynamic state
variables describe the equilibrium states
of a system. The various state variables
are not always independent. They can be
mathematically related. The mathematical
relation between the state variables is called
the equation of state. For example, for an
ideal gas, the equation of state is the ideal gas
equation,

pV =nRT --- (4.5)
Where, p, Vand T are the pressure, the volume
and the temperature of the gas, n is the number
of moles of the gas and R is the gas constant.
For a fixed amount of the gas, i.e., for given n,
there are thus, only two independent variables.
ItcouldbepandV,orpand T,orVandT.

|- AP

|

I =1 B(V, p)
v, Vv v,

Fig. 4.10: A typical p-V diagram.

The graphical representation of equation
of state of a system (of a gas) is called the
p - V diagram, or the p - V curve (the pressure
— volume curve), or the indicator diagram of
the system. Figure 4.10 shows a typical p-V
diagram for an ideal gas at some constant
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temperature. The pressure-volume curve for
a constant temperature is called an isotherm.
Real gases may have more complicated
equations of state and therefore, a complicated
p-V diagram. (The Van-der-Wall’s equation
with various corrections for example, is
complicated for a real gas and is equally
interesting). The equation of state of a system
(usually a gas confined to a cylinder with a
movable, frictionless and massless piston) and
its p - V diagram are very useful in studying
its behavior. In the following sections, we will
discuss some systems and their behavior using
p - V diagrams.

4.6.3 The p-V diagram:

Consider Eq. (4.2), i.e.,

v, v,
W= de: j pdV
V. V.,

The integrai in this equation can be
evaluated if we know the relation between
the pressure p and the volume V, or the path
between the limits of integration. Equation.
(4.2) can be represented graphically.

A gas confined to a cylinder with a
movable, frictionless, and massless piston can
be, 1) expanded with varying pressure (Figure
4.11 a), or 2) it can be compressed with varying
pressure Fig. 4.11 (b), or 3) it can expand at
constant pressure Fig. 4.11 (c).

The area under the curve in the p-V
diagram, is the graphical representation of the
value of the integral in Eq. (4.2). Since this
integral represents the work done in changing
the volume of the gas, the area under the p-V
curve also represents the work done in this
process.

) Use your brain power

Verify that the area under the p-V curve has
dimensions of work

Figure 4.11 (a) shows expansion of the gas. Its
volume changes due to outward displacement
of the piston and the pressure of the gas

PP 1 Work = Area
TN rar=o
2
ID2 e o o o T TR

Ve V.,

Fig.4.11(a): Positivework withvarying pressure.
decreases. The work done by the gas in this
case is positive because the volume of the gas
has increased.

Similarly, Fig. 4.11 (b) shows compression
due to inward displacement of the piston. The
pressure of the gas is increased and the work
done by the gas is now negative.

p ___2 Work = Area
2 v,
=[;pav<o
o) SEF SRR !
Vv
0" v, v,
Fig. 4.11 (b): Negative work with varying

pressure.

Figure 4.11 (c) shows the p-V diagram
when the volume of the gas changes from
V. to V,at a constant pressure. The curve is
actually a line parallel to the volume axis. The
work done during volume change at constant
pressure is W =p (V.- V. ), (Only in this case
the integration is p (dV)).

P

]

TR NS

P b=

4

0"V v,

Work = Area

:p(vz' V1)>0
Fig. 4.11 (c): Positive work at constant pressure,
When the volume is constant in any
thermodynamic process, the work done is

zero because there is no displacement. These
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changes are very slow. We will discuss such
processes in some details in a later section.
4.7 Thermodynamic Process:

A thermodynamic process is a procedure
by which the initial state of a system changes
to its final state. During such a change, there
may be a transfer of heat into the system from
its environment, (positive heat), for example
when water boils heat is transferred to water.
Heat may be released from the system to its
environment (negative heat). Similarly, some
work can be done by the system (positive
work), or some work can be done on the system
(negative work). When the piston in a cylinder
is pushed in, some work is done on the system.
We know that these changes should occur
infinitesimally slowly so that the system
is always in thermodynamic equilibrium.
Such processes in which changes in the state
variables of a system occur infinitesimally
slowly are called quasi static systems.

When a thermodynamic system changes
from its initial state to its final state, it passes
through a series of intermediate states. This
series of intermediate states when plotted on a
p - V diagram is called a path. The p - V curve
or the p - V diagram, shown in Fig. 4.11 is such
a path. It tells us the way a system has gone
through a change.

4.7.1 Work Done During a Thermodynamic
Process:

plg—s2t—F

\4 1 \ 4
Dr D 3> _B

: I g
0"V Ve

Fig. 4.12 (a): Different ways to change a system.
Let us understand the relation between a

path and the work done along a path. Consider
Fig. 4.12 (a) which describes different ways
in which we can change the state of a system.
The system is initially at state A on the p-V
diagram. Its pressure is p. and volume is V.. We
say that the state is indicated by the coordinates

(V., p,). The final state of the system is shown
by the point B with its coordinates given by
(V., p). The curve 1 (path 1) shown in the
Fig. 4.12 (a) is one of the many ways (paths) in
which we can change the system from state A
to the state B. When the system changes itself
from A to B along the path 1, both its pressure
and volume change. The pressure decreases
while the volume increases. The work done
by the system is positive (because the volume
increases). It is given by the area under the

curve 1 as shown in the Fig. 4.12 (b).

A
pl ll:
Pr é :B
o1V v

Fig. 4.12 (b): Pressure and volume both change.

Second way to change the state from A
to state B is path 2 as shown in Fig. 4.12 (c).
In this case, the volume increases to V, from
the point A up to the point C at the constant
pressure p,. The pressure then decrease to p, as
shown. The volume remains constant during
this change. The system is now in the state B
with its coordinates given by (V,, p,).

A 2 ¢
Di "E 2>
P — L
o, 7
Fig. 4.12 (c): First the volume changes at

constant pressure and then pressure changes at
constant volume.

The work done in this process is
represented by the shaded area under the curve
2 asin Fig. 4.12 (c).

Third way to change the state from A to
state B is path 3 as shown in Fig. 4.12 (d). In
this case, the pressure decreases from p, to p,
but the volume remains the same. Next, the
volume changes to V, at constant pressure p..
The work done in this process is represented
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by the shaded area under the curve 3 as in
Fig. 4.12 (d). It is easily noticed that in the
three cases we discussed, the amount of work
done is not the same.

A
bl
3
ol ¥, 7

Fig. 4.12 (d): First the pressure drops at constant
volume and then volume increases at constant
pressure.

Remember that these are only three paths
amongst many along which the system can
change its state. It is interesting to note that in
all these cases, though work done during the
change of state is different, the initial and the
final state of the system is the same.

We conclude thatthe work done by a system
depends not only on the initial and the final
states, butalso onthe intermediate states, i.e.,on
the paths along which the change takes place.
4.7.2 Heat Added During a Thermodynamic
Process:

Thermodynamic state of a system can
be changed by adding heat also. Consider a
thermodynamic system consisting of an ideal
gas confined to a cylinder with a movable,
frictionless, and massless piston. Suppose
we want to change the initial volume V, of
the gas to the final volume V, at a constant
temperature.

State 2

Burner

Fig. 4.13 (a): Isothermal expansion of gas,
Burner supplies heat, system does work on
piston (W>0, Q>0).

There are two different ways in which
this change in volume can be made. Figure
4.13 (a) shows the first method. In this case,
the gas is heated slowly, in a controlled manner
so that it expands at a constant temperature. It
reaches the final volume V, isothermally. The
system absorbs a finite amount of heat during
this process.

insulation
Vacuum
Y v
| VeV, +
X— V.
—— ———

Fig. 4.13 (b): Sudden uncontrolled expansion
of gas. No heat enters, system does no work
(W=0, Q=0).

In the second case, shown in Fig. 4.13 (b)
gas cylinder is now surrounded by an
insulating material and it is divided into two
compartments by a thin, breakable partition.
The compartment X has a volume V, and
the compartment Y has a volume V', so that
V. +V'._V,. The compartment X of the cylinder
is filled with the same amount of gas at the
same temperature as that in the first case
shown in the Fig. 4.13 (a). The compartment
Y is empty, it contains no gas particles or any
other form of matter. The initial state of the
system is the same in both cases.

The partition is now suddenly broken. This
causes a sudden, uncontrolled expansion of the
volume of the gas. The gas occupies the volume
that was empty before the partition is broken.
There is no exchange of heat between the gas
and its environment because the cylinder is
now surrounded by an insulating material. The
final volume of the system after the partition
is broken is V,. In this case, the gas has not
done any work during its expansion because it
has not pushed any piston or any other surface
for its expansion. Such expansion is called
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free expansion. A common example of free
expansion is abrupt puncturing of an inflated
balloon or a tyre.

It is experimentally observed that when an
ideal gas undergoes a free expansion, there is
no change of temperature. Therefore, the final
state of the gas in this case also, is the same
as the first case. The intermediate states or the
paths during the change of state in the first and
the second case are different. But the initial
and the final states are the same in both cases.
Figures 4.13 (a) and (b) represent two different
ways of taking a system from the initial state
to the final state. This means we have two
different paths connecting the same initial and
the final states of a system.

In case of the method shown in
Fig. 4.13 (a) there is an exchange of heat. In
case of the method shown in Fig. 4.13 (b),
there is no exchange of heat and also, the
system does not do any work at all because
there is no displacement of any piston or any
other surface.

To conclude, heat transferred to a system
also depends on the path.

4.7.3 Classification of Thermodynamic
Processes:

As we have seen earlier, a thermodynamic
state can be described by its pressure p,
volume V, and temperature T. These are the
state variables of a system. At present, we will
restrict our description of a thermodynamic
system only to its pressure, volume and
temperature.

A process by which two or more of
these variables can be changed is called a
thermodynamic process or a thermodynamic
change. As we have discussed earlier, there
can be a number of different ways to change
these parameters, that is, there are different
thermodynamic processes. But in practice, for
the sake of measurement, any one of the state
variables is held constant and other two are
varied. This leads us to a very useful way of
classifying thermodynamic processes.

1. Reversible and Irreversible Processes:

We know that when two objects at
different temperatures are brought in thermal
contactthey reach athermal equilibrium. Inthis
process, the object at higher temperature loses
its heat and the object at lower temperature
gains heat. (But we never observe that after
some time, the two objects are back to their
initial temperatures). The object that was
previously hot never becomes hot again and
the previously cold object never becomes cold
again once they reach thermal equilibrium.
That means the two objects at different
temperatures reaching thermal equilibrium
is an irreversible process. Such processes
do not restore the initial state of the system.
Puncturing an inflated balloon or a tyre,
rubbing our palms together, burning a candle
are some familiar examples of irreversible
thermodynamic processes.

Some processes such as melting of
ice, freezing of water, boiling of water,
condensation of steam can be reversed.
That means the initial sates of the system
can be restored. These are some familiar
thermodynamic processes that are reversible.

A thermodynamic process (change) can
be a reversible process (change) or it can be an
irreversible process (change).

p
A

b

Py

4
Vi V,

Fig. 4.14 (a): p-V diagram of Reversible process.

Earlier,wehaveseenthatathermodynamic
process can be represented by a p - V diagram.
A reversible process is a change that can be
retraced in reverse (opposite) direction. The
path of a reversible thermodynamic process
is the same in the forward and the reverse
direction. Figure 4.14 (a) shows the path of
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a reversible thermodynamic process. This
path shows a reversible expansion of a gas
followed by its reversible compression. Such
changes are very slow and there is no loss of
any energy in the process and the system is
back to its initial state after it is taken along
the reverse path. Reversible processes are
ideal processes. A real thermodynamic process
will always encounter some loss due to friction
or some other dissipative forces.

P
A
pi

Py v B
Vi Vi
Fig. 4.13 (b): p-V diagram of Irreversible process.
An irreversible process is a change that
cannot be retraced in reverse (opposite)
direction. The path of an irreversible
thermodynamic process is not the same in
the forward and the reverse direction. Figure
4.14 (b) shows the path of an irreversible
thermodynamic process. There is a permanent
loss of energy from the system due to friction
or other dissipative forces in an irreversible
process. The change of state depends on
the path taken to change the state during
an irreversible process. An irreversible
process shows a hysteresis. Most real life
thermodynamic processes that we deal with
are irreversible.

/—C)Try this o

Rub your palms in one direction only (say
away from your wrist) till you feel warmth.
Rub them in the opposite way. Do you feel
warm again or you feel cold? Discuss your

experience.
- J

Cause of Irreversibility:
There are two main reasons of the
irreversibility of a thermodynamic process.

v

1. Many processes such as a free expansion
or an explosive chemical reaction take the
system to non-equilibrium states.

2. Most processes involve friction, viscosity
or some other dissipative forces. For
example, an object sliding on a surface
stops after moving through some distance
due to friction and loses its mechanical
energy in the form of heat to the surface
and it gets heated itself. The dissipative
forces are always present everywhere and
can be minimized at best, but cannot be
fully eliminated.

r—C) Remember this> ~

All spontaneous natural processes are
irreversible. For example, heat always
flows from a higher temperature to a lower
temperature on its own. We can say that an
irreversible process gives us the preferred
direction of a thermodynamic process.
An irreversible process can be said to be
unidirectional process.

\ & J

Assumptions for discussion of

thermodynamic processes:

We will be discussing various types of
thermodynamic systems in the following
sections. Here are the assumptions we make
for this discussion.

i) Majority of the thermodynamic processes
we will be discussing in the following
sections are reversible. That is, they
are quasistatic in nature. They are
extremely slow and the system undergoes
infinitesimal change at every stage except
the adiabatic processes. The system is,
therefore, in thermodynamic equilibrium
during all the change.

i) The ‘system’ involved in all the processes
isanideal gasenclosedinacylinderhaving
a movable, frictionless, and massless
piston. Depending on the requirements
of the process, the walls of the cylinder
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can be good thermal conductors (for an

isothermal process) or can be thermally

insulating (for an adiabatic process).

iii) The ideal gas equation is applicable to the
system.

2. Isothermal process:

A process in which change in pressure and
volume takes place at a constant temperature
is called an isothermal process or isothermal
change. For such a system AT = 0. Isothermal
process is a constant temperature process. This
is possible when a system is in good thermal
contact with its environment, and the transfer
of heat from, or to the system, is extremely
slow so that thermal equilibrium is maintained
throughout the change.

For example, melting of ice, which takes
place at constant temperature, is an isothermal
process.

C) Remember this> ~

1. For an isothermal process, none of the
quantities Q and W is zero.

2. For an isothermal change, total amount
of heat of the system does not remain
constant.

|\ J

Thermodynamics of Isothermal Process:

The temperature of a system remains
constant in an isothermal change and Boyle’s
law can be applied to study these changes.
Therefore, the equation of state for an
isothermal change is given by,

pV = constant --- (4.6)

If p,, V, and p, V, are the variables of
a system in its initial and the final states
respectively, then for an isothermal change,
p., V. =p, V, _constant.

Consider the isothermal expansion of
an ideal gas. Let its initial volume be V, and
the final volume be V,. The work done in an
infinitesimally small isothermal expansion is
given by Eq. (4.1), dW = pdV. The total work

done in bringing out the expansion from the
initial volume V, to the final volume V. is given

by, v,
W= IpdV
Vv,

But we know that for an ideal gas,
pV = nRT. Using this in the previous equation
we get,

Vy
W=nRTjd—V
PV

V.
W= nRTan—-’ - (4.7)

For an ideal gas,l its internal energy
depends on its temperature. Therefore, during
an isothermal process, the internal energy of an
ideal gas remains constant (AU = 0) because
its temperature is constant (AT = 0).

The first law of thermodynamics (Eqg. 4.4)
when applied to an isothermal process would
now read as,

Q=W
O =W = s
LO=w —nRTln7

1

- (4.8)
- (4.9)

Thus, the heat transferred to the gas is
completely converted into the work done, i.e.,
for expansion of the gas. From Eq. (4.8) it is
obvious that when the gas absorbs heat, it does
positive work and its volume expands. When
the gas is compressed, it releases heat and it
does negative work.

Any change of phase occurs at a constant
temperature, and therefore, it is an isothermal
process. Figure 4.15 shows the p - V diagram
of an isothermal process. It is called as an
isotherm.

p
A

pi

Pr B
4 Vi

Fig. 4.15: p-V diagram of an isothermal process.
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Example 4.5:

0.5 mole of gas at temp 300 K expands
isothermally from an initial volume of 2.0L
to final volume of 6.0L. (a) What is the work
done by the gas ? (R =8.31 J mol* K1),

(b) How much heat is supplied to the gas?
Solution: (a) The work done in isothermal
vy

expansion is W = nRTIn | —

i

Where n=0.5, V,=6L, V,=2L

W = 0.5 mol x—>222 300k 1nf 8L
mol - K 2L

=1.369 kJ.
(b) From the first law of thermodynamics,
the heat supplied in an isothermal process
is spent to do work an a system. Therefore,
Q=W =1.369 kJ.
Can you explain the significance of
positive sign of the work done and the heat?

J

/—C) Remember this> ~

Always remember for an isothermal
process:

1. Equation of state: pV = constant

2. AT = 0. Constant temperature process,

perfect thermal equilibrium  with
environment.
3.AU = 0. No change in internal

energy, energy is exchanged with the
environment.

4. Q = W. Energy exchanged is used to do
work.

5 W=pAV

6. An isothermal change is a very slow
change. The system exchanges heat
with its environment and is in thermal

equilibrium with it throughout the change.

\.

r—C) Use your brain power>ﬁ

Show that the isothermal work may also be

expressed as W = nRTIn [ﬂJ
2

|\

3. Isobaric process:

It is a constant pressure process. Boiling
water at constant pressure, normally at
atmospheric pressure, is an isobaric process.
Figure (4.16) shows the p-V diagram of an
isobaric process. It is called as an isobar. The
different curves shown on the maps provided
by the meteorology department are isobars.
They indicate the locations having same
pressure in a region. For an isobaric process,

none of the quantities AU, Q and W is zero.

V
Vi Vi
Fig. 4.16 : p - V diagram of an isobaric process.
Thermodynamics of Isobaric process:

The pressure of a system remains constant
in this process i.e. Ap = 0. Consider an ideal
gas undergoing volume expansion at constant
pressure. If V, and T, are its volume and
temperature in the initial state of a system and
V. and T_are its final volume and temperature
respectively, the work done in the expansion is
given by
W = pa¥ =p(V, ~¥,)=nR(T, ~T) - 4,10

Also, the change in the internal energy of
a system is given by,

AU =nC, AT =nC, (T, -T,)

Where, C,, is the specific heat at constant
volume and AT = (T, - T) is the change in its
temperature during the isobaric process.

According to the first law of
thermodynamics, the heat exchanged is given
by, Q=AU+W
Using the previous two equations we get,

Q=nC, (T, ~T,)+nR(T, -T)

0 =(nC, +nR)(T, -T))

- (4.11)

Q=nC,(T,-T) - (4.12)
Where, C, is the specific heat at constant
pressure .C, =C, +R.

¢~'~~



Equation (4.12) tells that the temperature
of a system changes in an isobaric process
therefore, its internal energy also changes
(Eq. 4.11). The heat exchanged (Eg. 4.12)
is partly used for increasing the temperature
and partly to do some work. The change in
the temperature of the system depends on the
specific heat at constant pressure C.

4 N\

Example 4.6:

One mole of an ideal gas is initially kept in
a cylinder with a movable frictionless and
massless piston at pressure of 1.0mPa, and
temperature 27°C. It is then expanded till its
volume is doubled. How much work is done
if the expansion is isobaric?

Solution: Work done in isobaric process
given by W =pAV = (V,- V).

V=2V, . W=2pV,

V. can be found by using the ideal gas
equation for initial state.

p, V. =nRT. for n =1 mol,

v =20 g 31522

D; 1x10
W =2x10°%249%x107*
W =49KkJ

|\ J

r—C) Remember this> ~

Always remember for anisobaric process:

1. Ap = 0. Constant pressure process.

2. Temperature of the system changes,
AT #0.

3. Q = AU + W. Energy exchanged is
used to do work and also to change
internal energy, i.e., to increase its
temperature.

4. W = pAV. Volume changes when work
is done.

(& J
4. Isochoric process:

It is a constant volume process. A system
does no work on its environment during an
isochoric change. Figure 4.17 shows the

=249%x10*m’?

7=

p-V diagram of an isochoric process. For an
isochoric process, AV =0, and we have, from
the first law of thermodynamics, AU = Q.
This means that for an isochoric change, all
the energy added in the form of heat remains
in the system itself and causes an increase
in its internal energy. Heating a gas in a
constant volume container or diffusion of a
gas in a closed chamber are some examples of
isochoric process.
P

D A

Py B

V
Vi
Fig. 4.17: p-V diagram of isochoric process.

Thermodynamics of Isochoric process:

For an isochoric process, we have, AV =0.
The system does not do any work and all the
energy supplied to the system is converted
into its internal energy. The first law of
thermodynamics for isochoric process is

Q =AU --- (4.13)
The change in internal energy is given by
AU =nC, AT

The work done is given by
W = pAV = 0 (because AV = 0).
The heat exchanged is given by the first law of
thermodynamics,
O=AU+W =AU = nC, AT  ---(4.14)

C) Remember this> ~

Always remember for an isochoric

process:

1. AV = 0. Constant volume process.

2. W =0. No work is done because volume
remains constant, AV = 0.

3. Q = AU. Energy exchanged is used to
change internal energy.

4. AT # 0. Temperature of the system
changes.

\ & J
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5. Adiabatic process:

It is a process during which there is no
transfer of heat from or to the system. Figure
4.18 shows the p-V diagram of an adiabatic
process. For an adiabatic change, Q = 0. Heat
transfer to or from the system is prevented
by either perfectly insulating the system
from its environment, or by carrying out the
change rapidly so that there is no time for
any exchange of heat. Puncturing an inflated
balloon or a tyre are some familiar examples
of adiabatic changes. For an adiabatic change,

AU =-W --- (4.15)
When a system expands adiabatically, W is
positive (work is done by the system) and AU
is negative, the internal energy of the system
decreases. When a system is compressed
adiabatically, W is negative (work is done on
the system), and AU is positive. The internal
energy of the system increases in an adiabatic
process. It is observed that for many systems,
temperature increases when internal energy
increases and decreases when the internal
energy is decreased.

P
A

pi

Py B
4 Vi
Fig. 4.18: p-V diagram of adiabatic process.
Thermodynamics of Adiabatic process:
For an adiabatic process we have,
pV" = constant = C --- (4.16)

where, y is the ratio of the specific heat at

constant pressure to the specific heat at
C

constant volume, i.e., y = C—”

4
y is also called adiabatic ratio. For
moderate temperature changes, the value of y

v

1§ % for monoatomic gases, 7 for diatomic
5

w |

8
gases and 6 for polyatomic gases.

Equations (3.23), (3.24) and (3.25) can be
extended to obtain these values.

An adiabatic system is thermally isolated
from its environment, therefore, it cannot
exchange heat with it. Therefore, when a
system undergoes an adiabatic change, its
temperature and internal energy both change.
The change in internal energy is,

AU = C_ (AT) --- (4.17)
The work done is,
/
W= [pdv
v
Using Eq. (4.16) we have,
pV
(r+) 77
W = CX V ’
1-y .
where V changes from V. to V..
w=C | 1 1 - (4.18)
(=) e
From (Eqg. 4.16) we have,
pvr=C
or,
piviy = prfY
Therefore, we can write (Eq. 4.18) as,
N pV
(l—j/) Vf(Vfl) Vl_(7*1)
W= ! x(pV —p.V.) --- (4.19)
(1_3/) AR i .
nR(T,-T,) (pV,-pV,
W — ( ./ ) — ( ./ ./ ) ——_— (4l20)

(1-7) (1-7)

Equation (4.20) implies that when work is done
by the gas, i.e., when the gas expands, W > 0,
and T,> T.. This mean that the gas will cool
down. Similarly, if the work is done on the gas,
i.e., if the gas is compressed W < 0,and T,< T..
This means that the gas will warm up.

"~~



/—C) Remember this>

Always remember for an adiabatic process:

1. Equation of state: pV* = constant.

2. Q = 0. No exchange of heat with the
surroundings. The system is perfectly
insulated from its environment, or the
change is very rapid.

3. AU = - W. All the work is utilized
to change the internal energy of the
system.

4. AT # 0. Temperature of the system
changes.

5. Adiabatic expansion causes cooling
and adiabatic compression causes
heating up of the system.

6. _nR(T-T,) _ (p/Y, -V

(1-7) (1-7)

7. Most of the times, an adiabatic change
is a sudden change. During a sudden
change, the system does not find
any time to exchange heat with its
environment.

1.0L is adiabatically compressed to
(1/25)" of its initial volume. Its initial
pressure and temperature is 1.01 x10° Pa
and 27°C respectively. Given C, for ideal
gas = 20.8J/mol.K and y = 1.4. Calculate (a)
final pressure, (b) work done, and (c) final
temperature. (d) How would your answers
change, if the process were isothermal ?
Solution: (a) To calculate the final pressure
p,. This can be calculated by using

I/i 4
pbi=Ps V_
S

=(1.01x10°Pa) (15)"*

=44.8x10° Pa (about 45 atm) .
(b) To calculate the work done,
(prf _ini)

(1-7)

3
Example 4.7: An ideal gas of volume

-

W=——(BY,~EF,)R=F,
[(1.01x10°)(1.0x107) |
1

= 3.3
1.4-1 _{(44.&( 103(%}}

=—494]
(c) To calculate final temperature T,

consider,

VoY
T, =T (7/] =(300K) (15)**
=886K =613°C

The pressure involved in this process
is about 45 atm. This is an adiabatic
compression. The temperature of the gas
is increased without any transfer of heat.
Similar heating is used in automobile
(diesel) engines. The fuel used in the engine
is heated rapidly to such a high temperature
that it ignites without any spark plug.
(d)
(1) Pressure in isothermal process is given by
Pi Vi =P Vf

p.V

p,=—+=15atm

(i) Ther{e will be no change inthe temperature
because it is an isothermal process.
(iii) Work done in isothermal process is
given by v
W= nRTln[—fj, n=0.405
v
=0.0405x831x300(—0.270)
=-27261]

The work done during adiabatic process is
very much less than the work done during
isothermal process. Can you explain
this? What happens to this work which is

| apparently 'lost' ?

J

J

&

r—C) Use your brain power>ﬁ

1. Why is the p-V curve for adiabatic
process steeper than that for isothermal
process? 2. Explain formation of clouds at
high altitude.

J
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) Can you tell?

When the temperature of a system is
increased or decreased in an adiabatic
heating or cooling, is there any transfer of
heat to the system or from the system?

6. Cyclic Process:

A thermodynamic process that returns a
system to its initial state is a cyclic process.
In this process, the initial and the final state is
the same. Figure 4.19 shows the p-V diagram
of a cyclic process. For a cyclic process, the
total change in the internal energy of a system
is zero. (AU = 0). According to the first law
of thermodynamics, we have, for a cyclic
process,

Q=W
p

- (4.21)

P

Py

Fig. 4.19: p-V diagram of cyclic process.

) Remember this> ~

Working of all heat engines is a cyclic
process.

J

(" N\

Example 4.8: Cyclic process:

The total work done in the cyclic process
shown in the Fig. 4.19 is -1000 J. (a) What
does the negative sign mean? (b) What is
the change in internal energy and the heat
transferred during this process. (c) What
will happen when the direction of the cycle
is changed?

Solution: (a) Work done in the process from
A to B along path 2 is given by the area
under this curve. In this process, volume
is increasing therefore the work done is
positive.

|\ J

Work done in the process from B to A )
along path 1 is given by the area under this
curve. In this process volume is decreasing
therefore the work done is negative.

The total work done during the
complete cycle, from A to B along path 2
and form B to A along path 1 is the area
enclosed by the closed loop. This is the
difference between the area under the curve
1 and that under the curve 2. Since the area
under curve 1 is negative and larger than
the area under the curve 2, the area of the
loop is also negative. That means the work
is done by the system is negative.

(b) This is a cyclic process which means
the initial and the final state of the
system is the same. For a cyclic process
AU =0, s0 Q = W = - 1000 J. That is,
1000 joules of heat must be rejected by the
system.

(c) If the direction of the cycle is changed
the work done will be positive. The system
will do work. Form this example we
conclude that: The total work done in a
cyclic process is positive if the process
is goes around the cycle in a clockwise
direction. The total work done in a cyclic
process is negative if the process goes
around the cycle in a counterclockwise
direction.

|\ J

/—C) Can you tell? N

1. How would you interpret the Eq. 4.21
for a cyclic process?

2. An engine works at 5000 RPM, and it
performs 1000 J of work in one cycle.
If the engine runs for 10 min, how much

L total work is done by the engine?
7. Free Expansion:

These  expansions are  adiabatic
expansions and there is no exchange of heat
between a system and its environment. Also,
there is no work done on the system or by the
system. Q = W = 0, and according to the first
law of thermodynamics, AU = 0. For example,
when a balloon is ruptured suddenly, or a tyre
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is suddenly punctured, the air inside rushes out
rapidly but there is no displacement of a piston
or any other surface. Free expansion is different
than other thermodynamic processes we have
discussed so far because it is an uncontrolled
change. It is an instantaneous change and the
system is not in thermodynamic equilibrium.
A free expansion cannot be plotted on a p-V
diagram. Only its initial and the final state can
be plotted.

(Example 4.9: A cyclic process ABCA\
V‘ C B |s_ shown |_n V-T
: diagram (Fig (a)).
It is performed with
a constant mass of

Vit A _ideal gas. How will
T T.  this transform to a
(Fig (a) p-V digram?

Solution: Straight line form A to B on the
V-T diagram means

V o T, ie, pis 1 A B
constant. V is constant
and temperature
decreases. Along C
B - Ci.e., p should

v

Vv
also decrease. (Fig (b)
Temperature is constant along CA. That

means it is an isothermal process. The p-V

curve would look as shown in the Fig (b).

J

&
4.8 Heat Engines:

As mentioned earlier, thermodynamics
is related to study of different processes
involving conversion of heat and work into
each other. In this section, we will study the
practical machines that convert some heat into
work. These are heat engines.

4.8.1 Heat Engine:

Heat engines are devices that transform
heat partly into work or mechanical energy.
Heat engines work by using cyclic processes
and involve  thermodynamic  changes.
Automobile engines are familiar examples of
heat engines.

A heat engine receives heat from a source
called reservoir and converts some of it into
work. Remember that all the heat absorbed
is not converted into work by a heat engine.
Some heat is lost in the form of exhaust.

A typical heat engine has the following
elements:

(1) A working substance: It is called the
system. It can be an ideal gas for an ideal heat
engine (to be discussed later). For a practical
heat engine, the working substance can be a
mixture of fuel vapour and air in a gasoline
(petrol) or diesel engine, or steam in a steam
engine. It is the working substance that absorbs
heat and does work.

(2) Hot and cold reservoir: The working
substance interacts with the reservoirs. The
hot reservoir is the source of heat. It is at a
relatively high temperature and is capable of
providing large amount of heat at constant
higher temperature, T,. It is also called as
the source. The cold reservoir absorbs large
amount of heat from the working substance
at constant lower temperature, T_. It is also
called as the sink.

(3) Cylinder: Generally, the working
substance is enclosed in a cylinder with a
moving, frictionless, and massless piston.
The working substance does some work by
displacing the piston in the cylinder. This
displacement is transferred to the environment
using some arrangement such as a crank shaft
which transfers mechanical energy to the
wheels of a vehicle.

Heat engines are of two basic types. They
differ in the way the working substance absorbs
heat. In an external combustion engine, the
working substance is heated externally as in
case of a steam engine. In case of the internal
combustion engine, the working substance
is heated internally similar to an automobile
engine using gasoline or diesel.

Any heat engine works in following three basic
steps.

T I VN



1. The working substance absorbs heat from
a hot reservoir at higher temperature.

2. Part of the heat absorbed by the working
substance is converted into work.

3. The remaining heat is transferred to a cold
reservoir at lower temperature.

Heat engines are classified according to
the working substance used and the way these
steps are actually implemented during its
operation. Heat engines are diagrammatically
represented by an energy flow diagram
schematically shown in Fig. 4.20. Energy
exchange takes place during various stages of
working of a heat engine.

Input (Q,) — zEnglne
< Work (W)
Output (Q.) =0yt 0O
=101

Cold reservoir
at temp. 7,

Fig. 4.20: Schematic energy flow diagram of a
heat engine.

Let Q, be the heat absorbed by the
working substance at the source, and Q. be
the heat rejected by it at the sink. In a heat
engine, Q, is positive and Q. is negative.
Also, let W be the work done by the working
substance.

In the Fig. 4.20, the circle represents the
engine. The ‘heat pipelines’ shown in the
diagram represent the heat absorbed, rejected,
and converted into work. The width of the heat
‘pipeline’ indicated by Q,,, is proportional to the
amount of heat absorbed at the source. Width
of the branch indicated by Q. is proportional
to the magnitude | Q.| of the amount of heat
rejected at the sink. Width of the branch of

the pipeline indicated by W is proportional to
the part of the heat converted into mechanical
work.

One single execution of the steps
mentioned above is one operating ‘cycle’ of
the engine. Several such cycles are repeated
when a heat engine operates. The quantities Q,,
and Q. represent the amount of heat absorbed
(positive) and rejected (negative) respectivety
during one cycle of operation.

) Do you know?

The number of repetitions of the operating
cycles of an automobile engine is indicated
by its RPM or Revolutions Per Minute.

The net heat Q absorbed per operating
cycle is,

0=0,+0.= |QH|_ 0. --- (4.22)

The net work done in one operating cycle,
by the working substance, is given by using the
first law of thermodynamics.

W=0=0,|-10.| - (4.23)

Ideally, we would expect a heat engine
to convert all the heat absorbed, Q,, into
work. Practically, this is not possible. There is
always some heat lost, i.e., Q_.# 0. The thermal
efficiency 1 of the heat engine is defined as,

n=2 - (4.24)
Oy

Thus, the thermal efficiency, or simply,
the efficiency of a heat engine is the ratio of
the work done by the working substance and the
amount of heat absorbed by it. It is the ratio of
the output, in the form of the work done W by
the engine, and the input, in the form of the heat
supplied Q,,. In simple words, efficiency of a
heat engine is the fraction of the heat absorbed
that is converted into work, Eq. (4.24).

In terms of the energy flow diagram
Fig. 4.20, the ‘pipeline’ representing the
work is as wide as possible and the pipeline
representing the exhaust is as narrow as
possible for the most efficient heat engine.
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There is a fundamental limit on the efficiency
of a heat engine set by the second law of
thermodynamics, which we will discuss later.

Using Eq. (4.22) and Eq. (4.23) we can
write the efficiency of a heat engine as,

n= 1399 (405
Oy Ou |04
Equation (4.25) gives the thermal

efficiency of a heat engine. It is a ratio of the
quantities which represent energy. Therefore,
it has no units but, we must express W, Q,,, and
Q. in the same units.

4.8.2 The Heat Engine Cycle and the p-V
Diagram:

As discussed previously, the working
of a heat engine is a well defined sequence
of operations. It is a cyclic thermodynamic
process. We know that a thermodynamic
process can be represented by a p-V diagram.
We will now discuss the p-V diagram of a
heat engine. Keep in mind that this is a p-V
diagram of a general heat engine. There are
different ways of operating a heat engine. We
will discuss some such heat engines in the
following sections.

A heat engine uses energy absorbed in the
form of heat to do work and then rejects the
heat which cannot be used to do work. Heat is
absorbed in one part of the cycle, work is done
in another part, and the unused heat is rejected
in yet other part of the cycle. The p-V diagram
of a typical heat engine is shown in Fig. (4.21).

B 1
Heat
absorbtion Work done
o _ by gas
3 \
% \
> A C  Heat
., rejected
Work done el
.TH
on gas .
D ™.T,

Fig. 4.21: p-V diagram of a typical heat engine.

The operating cycle begins at the point A
in the cycle. The working substance, the gas in
this case, absorbs heat at constant volume and
no work is done by the gas or on the gas. The
pressure is increased till the point B is reached.
The temperature of the gas also increases and
its internal energy increases.

The gas starts expanding by pushing the
piston away and its volume changes from
the point B to the point C. Because the gas
expands, its pressure is reduced. The gas does
work in this part of the cycle.

When the point C is reached, the excess
heat, the heat that is not utilized in doing work
by the gas, is rejected. The gas cools down and
its internal energy decreases. This process is
again at constant volume. The pressure of the
gas is reduced and point D on the p-V diagram
is reached.

The gas is now compressed. Its volume
decreases and its pressure increases. The
change continues till the point A is reached.
The cycle is complete and the system is ready
for the next cycle.

Thus, the p-V diagram is a visual tool
for the study of heat engines. The working
substance of a heat engine is usually a gaseous
mixture. Study of the p-V diagram helps us
understand the behavior of the three state
variables of a gas throughout the operational
cycle.

The operation of a heat engine is a cyclic
process therefore, its p-V diagram is a closed
loop. The area of the loop represents the work
done during one complete cycle.

Since work is done by the gas, or on
the gas, only when its volume changes, the
p-V diagram provides a visual interpretation
of the work done during one complete cycle.
Similarly, the internal energy of the gas
depends upon its temperature. Hence, the
p-V diagram along with the temperatures
calculated from the ideal gas law determines
the changes in the internal energy of the gas.
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We can calculate the amount of heat added or

rejected from the first law of thermodynamics.
Thus, a p-V diagram helps us analyze the

performance of any heat engine which uses a

gas as its working substance.

4.9 Refrigerators and Heat Pumps:

So far, we have discussed a heat engine
which takes heat from a source at higher
temperature and rejects it to a sink at lower
temperature. The input provided to the working
substance (a gas or a mixture of gasoline and
air) in a heat engine is in the form of heat
which is converted into mechanical work as
output. Figure 4.20 shows this in the form of an
energy flow diagram. Refrigerators and heat
pumps are heat engines that work in backward
direction. They convert mechanical work into
heat.

4.9.1 Heat Flow from a Colder Region to a
Hotter Region:

According to the second law of
thermodynamics (to be discussed in the next
article), heat cannot flow from a region of
lower temperature to a region of higher
temperature on its own. We can force heat to
flow from a region of lower temperature to a
region of higher temperature by doing work on
the system (or, on the working substance of a
heat engine). Refrigerators or air-conditioners
and heat pumps are examples of heat engines
which cause heat to be transferred from a
cold region to a hot region. Usually, this is
achieved with the aid of phase change of a
fluid, called the refrigerant. The refrigerant
is forced to evaporate and then condense by
successively decreasing and increasing its
pressure. It can, therefore, ‘pump’ energy
from a region at lower temperature to a region
of higher temperature. It extracts the heat of
vaporization of the refrigerant from the cold
region and rejects it to the hotter region outside
the refrigerator. This results in cooling down
the cold region further.

Figure 4.22 shows the concept of
transferring heat from a cold region to a hot
region in a schematic way. Heat from the
cold region is carried to the hot region by
the refrigerant. It extracts heat from a cold
region due to forced evaporation. The heat of
evaporation of the refrigerant thus absorbed is
rejected by compressing and condensing it into
liquid at a higher temperature. All this process
is carried out in a mechanism involving a
compressor and closed tubing such as seen at
the back of a house hold refrigerator.

Work done = Compression Expansion and
and forced condensation forced vaporisation

(Heat rejection) (Heat absorption)
Refrigerant a
Hot region Cold region

Fig. 4.22: Schematic diagram of transferring
heat from a cold region to a hot region.
4.9.2 Refrigerator:
Refrigeration is a process of cooling
a space or substance of a system and/or to
maintain its temperature below its ambient
temperature. In simple words, refrigeration is
artificial cooling.

Expansion
valve

Refrigerant
Condenser

Evaporator
coil \

\l, Low
pressure

Inside
refrigerator

High
pressure

Hot region

Compressor
Fig. 4.23 (a): Schematics of a refrigerator.
A refrigerator extracts heat from

a cold region (inside the chamber, or
the compartments) and delivers it to the
surrounding (the atmosphere) thus, further
cooling the cold region. That’s the reason
why if you place your hand behind a working
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refrigerator, you can feel the warm air. But
the interior of the refrigerator is cold. An air
conditioner also works on similar principles.

Figure 4.23 (a) shows the schematics of
the mechanism used in a typical refrigerator.
It consists of a compressor, an expansion
valve, and a closed tube which carries the
refrigerant. Part of the tube, called the cooling
coil, is in the region which is to be cooed at
lower temperature and lower pressure. The
other part which is exposed to the surrounding
(generally, the atmosphere) is at a higher
temperature and higher pressure. A fluid
such as (fluorinated hydrocarbons) is used as
refrigerant. Normally, the cold and the hot part
of the coil contain the refrigerant as a mixture
of liquid and vapour phase in equilibrium.

Cold reservoir
at T,

Fig. 4.23 (b): Energy flow diagram of a

refrigerator.

Figure 4.23 (b) shows the energy flow
diagram of a refrigerator. As you can see,
the heat extracted from a cold reservoir is
supplemented by the mechanical work done
(on the refrigerant) by the compressor and the
total energy is rejected at the hot reservoir. The
refrigerant goes through the following steps in
one complete cycle of refrigeration.

Step 1: The fluid passes through a nozzle and
expands into a low-pressure area. Similar to
the way carbon dioxide comes out of a fire
extinguisher and cools down, the fluid turns
into a gas and cools down. This is essentially
an adiabatic expansion.

Step 2: The cool gas is in thermal contact with
the inner compartment of the fridge. It heats

up as heat is transferred to it from the contents
of the fridge. This takes place at constant
pressure, so it's an isobaric expansion.

Step 3: The gas is transferred to a compressor,
which does most of the work in this process.
The gas is compressed adiabatically, heating
it and turning it back to a liquid.

Step 4: The hot liquid passes through coils on
the outside of the fridge, and heat is transferred
to the atmosphere. This is an isobaric
compression process.

The compressor is driven by an external
energy source and it does the work |W/| on the
working substance during each cycle.

4.9.3 Performance of a Refrigerator:

Consider the energy flow diagram of
a refrigerator Fig. 4.23 (b). It shows the
relation between the work and heat involved
in transferring heat from a low temperature
region to a high temperature region. This is a
cyclic process in which the working substance,
the refrigerant in this case, is taken back to the
initial state.

For a refrigerator, the heat absorbed
by the working substance is Q. and the heat
rejected by it is Q.. A refrigerator absorbs
heat at lower temperature and rejects it at
higher temperature, therefore, we have,
Q.>0,Q,<0, and W < 0. Hence, we write,
IW| and |Q,| = - Q,. In this case, we apply
the first law of thermodynamics to the cyclic
process. For a cyclic process, the internal
energy of the system in the initial state and
the final state is the same, therefore, from
Eq. (4.21), we have,

Qy+Q. =W ,or Q,+0.-W=0

=0,=0. W
For arefrigerator, Q,, <0, and W< 0, therefore,
04| =0+ | ---(4.26)

From the Fig.4.23 (b), we realize that the
heat |Q, | rejected by the working substance at
the hot reservoir is always greater than the heat
Q. received by it at the cold reservoir. Note
that the Eq. (4.26), derived for a refrigerator
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and the Eq. (4.23), derived for a heat engine,
are the same. They are valid for a heat engine
and also for a refrigerator.

The ratio % indicates the performance

of a refrigerator and is called the coefficient
of performance (CoP), K, or quality factor,
or Q-value of a refrigerator. Larger is the
ratio, better is the refrigerator. That means a
refrigerator has the best performance when
the heat extracted by the refrigerant at the
cold reservoir is maximum by doing minimum

work in one operating cycle.

From Eq. (4.26), [W|=|0.|-|0,|
ol lol
T el -e) 2

All the quantities on the right side of
Eq. (4.27) represent energy and are measured
in the same energy units. The coefficient of
performance, K of a refrigerator is, therefore, a
dimensionless number. For a typical household
refrigerator, K~ 5.

r‘C) Remember this> ~

Refrigerator transfers heat from inside a
closed space to its external environment so
that inside space is cooled to temperature
below the ambient temperature.

|\ J

) Do you know?

Capacity of a refrigerator is expressed in
litre. It is the volume available inside a
refrigerator.

4.9.4 Air conditioner:

Working of an air conditioner and a
refrigerator is exactly similar. It differs from a
refrigerator only in the volume of the chamber/
room it cools down. For an air conditioner, the
evaporator coils are inside the room that is to be
cooled and the condenser is outside the room.
The air cooled by the evaporator coils inside
the room is circulated by a fan placed inside
the air conditioning unit. The performance of

Q.

an air conditioner is defined by g =!=<l [ ltis
w

important to consider the rate of heat removed
H and the power P required for removing the
heat.

We define the rate of heat removed as

0.

the heat current H ==<, where, t is the time

in which heat|O,| is rémoved. Therefore, the
coefficient of performance of an air conditioner
can be calculated as,
O.| H H
w| PP
Typical values of K are 2.5 to 3.0 for room air
conditioners.

- (4.28)

) Do you know? N

Capacity ofanair conditioner isexpressed
in tonne. Do you know why?

Before refrigerator and AC was
invented, cooling was done by using
blocks of ice. When cooling machines were
invented, their capacity was expressed
in terms of the equivalent amount of ice
melted in a day (24 hours). The same term
\is used even today.

4.9.5 Heat Pump:

Heat pump is a device which works
similar to a refrigerator. It is used to heat a
building or a similar larger structure by cooling
the air outside it. A heat pump works like a
refrigerator operating inside out. In this case,
the evaporator coils are outside and absorb
heat from the cold air from outside. The
condenser coils are inside the building. They
release the absorbed heat to the air inside the
thus, warming the building.

r—C) Remember this> ~

Heat flow from a hot object to a cold object
is spontaneous whereas, work is always
required for the transfer of heat from a
colder object to a hotter object.

\ & J
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4.10 Second Law of Thermodynamics:
4.10.1 Limitations of the First Law of
Thermodynamics:

The First law of thermodynamics tells us
that heat can be converted into work and work
can also be converted into heat. It is merely
a quantitative statement of the equivalence of
heat and work. It has the following limitations.

(a) Itdoes nottell uswhether any particular
process can actually occur. According to the
first law of thermodynamics, heat may, on its
own, flow from an object at higher temperature
to one at lower temperature and it can also,
on its own, flow from an object at lower
temperature to one at higher temperature. We
know that practically, heat cannot flow from
an object at lower temperature to another
at higher temperature. The First law of
thermodynamics does not predict this practical
observation.

(b) According to the First law, we could
convert all (100%) of the heat available to
us into work. Similarly, all the work could
be converted into heat. Again, we know that
practically this is not possible.

Thus, the First law of thermodynamics
does not prevent us from converting heat
entirely into work or work entirely into heat.
These limitations lead to the formulation of
another law of thermodynamics called the
Second law of thermodynamics. We will
discuss this at a later stage in this chapter.

We have seen earlier in section 4.7.3 that
an irreversible process defines the preferred
direction of an irreversible process. It is also
found that it is impossible to build a heat
engine that has 100% efficiency Eq. (4.25).
That is, it is not possible to build a heat engine
that can completely convert heat into work.

Similarly, for arefrigerator itis impossible
to remove heat without doing any work on a
system. That is, the coefficient of performance,
Eq. (4.28) of arefrigerator can never be infinite.

These practical observations form the basis of
a very important principle of thermodynamics,
the Second law of thermodynamics.

The Second law of thermodynamics is
a general principle which puts constraints
upon the direction of heat transfer and the

efficiencies that a heat engine can achieve.

-
Fig. 4.24 (a): Energy
of an object at two

h % different hights.

h/2

A

Fig. 4.24 (b):
Limitations on efficiency
of a heat engine.

| 400K

Consider an object A at certain height
of h above the ground and another object B
of the same mass a height of h/2 as shown in
Fig. 4.24 (a). We know that potential energy
of the object B is half that of the object A. That
means we can extract only half the energy
from the object B. Similarly, if a heat engine
as shown in Fig. 4.24 (b) operates between
the temperatures of 800 K and 400 K, i.e., if it
receives heat at 800 K and rejects it at 400 K,
its maximum efficiency can be 50%.

4.10.2 The second law of thermodynamics,
statement:

We now know that heat can be converted
into work by using a heat engine. However,
our practical experience says that entire
heat supplied to the working substance can
never be converted into mechanical work.
Second law of thermodynamics helps us to
understand this. According to the second law
of thermodynamics, “It is impossible to extract
an amount of heat Q, from a hot reservoir
and use it all to do work W. Some amount of
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heat Q. must be exhausted to a cold reservoir.
This prohibits the possibility of a perfect heat
engine”.

Sometimes it is also called as the “Engine
Law’ or the ‘Engine Statement’ of the Second
law of thermodynamics.

Fig. 4.25 (a): Second law
of thermodynamics.

Cold reservoir

Fig. 4.25 (b): Energy
flow diagram of Engine
statement.

]

Figure 425 is a diagrammatic
representation of the application of the Second
law of thermodynamics to a heat engine. As you
can see from the diagram, Fig. 4.25 (a), all heat
engines lose some heat to the environment of a
perfect heat engine. All the heat Q,,, extracted
can not be used to do work. Figure 4.25 (b)
shows the energy flow diagram for such a
situation.

This form of statement of the Second law
of thermodynamics is called as the Kelvin-
Planck statement or the ‘First form’ of the
Second law of thermodynamics.

We have seen how the efficiency of a
heat engine is restricted by the second law
of thermodynamics. Heat engine is one form
of ‘heat — work conversion’. Let us see what
happens in case of a refrigerator, the other
form of ‘work — heat conversion’.

“It is not possible for heat to flow from
a colder body to a warmer body without any
work having been done to accomplish this
flow”.

This means that energy will not
flow spontaneously from an object at
low temperature to an object at a higher
temperature. This rules out the possibility
of a perfect refrigerator. The statements
about refrigerators are also applicable to air
conditioners and heat pumps, which work on
the same principles.

This is the “‘Second form’ or
Clausius statement of the Second law of
thermodynamics. Sometimes it is also
called as the ‘Refrigerator Law’ or the
‘Refrigerator Statement’ of the Second law of
thermodynamics.

Fig. 4.26 (a): Energy
flow diagram of a
practical refrigerator.

Cold reservoir
at 7.

Fig. 4.26 (b): Energy flow of
prefect refrigerator.

Cold reservoir
at 7,

Figure 4.26 is a diagrammatic
representation of the application of the Second
law of thermodynamics to a refrigerator. As
you can see form the energy flow diagram,
Fig. 4.26 (a), a practical refrigerator requires
work W to be done to extract heat Q,, from a
cold reservoir and reject it to a hot reservoir.
The statement means that spontaneous flow of
heat from an object at cold temperature is not
possible Fig. 4.26 (b).
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f-C) Remember this>

When we say that energy will not flow
spontaneously from a cold object to a hot
object, we are referring to the net transfer
of energy. Energy can transfer from a cold
object to a hot object either by transfer
of energetic particles or electromagnetic
radiation. However, in any spontaneous
process, the net transfer of energy will be
from the hot object to the cold object. Work
is required to transfer net energy from a
cold object to a hot object.

(& J
4.11 Carnot Cycle and Carnot Engine:

In section 4.7.3, we have discussed the
concept of a reversible and an irreversible
process at length. Now we will discuss why
reversibility is such a basic and important
concept in thermodynamics.

4.11.1 Significance of Reversibility in
Thermodynamics:

We know that a reversible process is a
‘bidirectional’ process, i.e., it follows exactly
the same steps in either direction. This requires
the process to take place in infinitesimally
small steps. Also, the difference between the
state variables in the two infinitesimally close
states should be very small. This would be
possible if the system is in thermodynamic
equilibrium with its environment throughout
the change.

An irreversible process, on the contrary,
is a unidirectional process. It can take place
in only in one direction. Any irreversible
process is not in thermal equilibrium with its
environment.

4.11.2 Maximum Efficiency of a Heat Engine
and Carnot’s Cycle:

We know that conversion of work to heat
(refrigerator, section 4.9.2) is an irreversible
process. A heat engine would convert
maximum heat into work if all irreversible
processes could be avoided. In that case, the
efficiency of the heat engine can be maximum.
Sadi Carnot, French engineer and scientist,

proposed a hypothetical ideal engine in 1824

which has the maximum efficiency.

In a carnot engine, there are basically two
processes:

(i) Exchange of heat (steps AtoBand Cto D
in the Fig. 4.21). For this to be reversible,
the heat exchange must be isothermal.
This is possible if the working substance
is at the temperature T,, of the source while
absorbing heat. The working substance
should be at the temperature of the cold
reservoir T, while rejecting the heat.

(i) Work done (steps B to C and D to A). For
work done to be reversible, the process
should be adiabatic.

Thus, the cycle includes two isothermal
and two adiabatic processes for maximum
efficiency. The corresponding p-V diagram
will then be as shown in the Fig. 4.27.

T,
‘\\ O, : heat absorbed
“ATLp) T
P
Isothermal
expansion
Adiabatic
ol p, expans‘ion B(.p.)..
2 T
1] c =
E Adiabatic
Ps X I
pansion
Isothermal
compression -
2 V)
O, : heat rejected v
Ve ooV
olume

Fig.4.27: Carnotcycle AB: Isothermal expansion,
BC: Adiabatic expansion, CD: Isothermal
compression, DA Adiabatic compression.

By using the expression for work done
during an adiabatic and an isothermal process
Eqg. (4.7) and (4.20), we can derive an expression

for the efficiency of a Carnot cycle/engine as,

n= QT (429)
QH |QH| TH

Thus, while designing a heat engine for
maximum efficiency, the source temperature
T,, should be as high as possible and the sink
temperature T should be as low as possible.

e O~



r—C) Use your brain power>ﬁ

Suggest a practical way to increase the

| efficiency of a heat engine. )

r‘C) Remember this> ~

Always Remember for a Carnot Engine:

1. Carnot engine is a hypothetical concept.

2. Every process must be either isothermal
or adiabatic.

3. The system must maintain
thermodynamic equilibrium throughout
the cycle so that it is reversible.

4. The efficiency of a Carnot engine can
never be 100% unless T_ = 0. We know
that this is not possible practically.
That means even an ideal heat engine,
the Carnot engine, cannot have 100%
efficiency.

\ & J

4.11.2 Carnot Refrigerator:

We know that a refrigerator is nothing but
a heat engine operated in the reverse direction.
Because each step in the Carnot cycle is
reversible, the entire Carnot cycle is reversible.
If we operate the Carnot engine in the reverse
direction, we get the Carnot refrigerator. Using
the Eq. (4.28), we can write the coefficient of
performance of a Carnot refrigerator as,

Qc
0, 04|
= = --- (4.30
Qc - QH| l— Qc ( )
1Ol
. e _Te .
Using |QH|_TH, in Eq. (4.30) we have,

the coefficient of performance of a Carnot

refrigerator as,
xo_ L --- (4.31)
TH _TC
Equation (4.31) gives the coefficient of
performance of an ideal refrigerator or, the
Carnot refrigerator. It says that the coefficient

of performance of a Carnot refrigerator also

depends on only the temperature difference
of the hot and the cold reservoir. When the
temperature difference is very small, the
coefficient is very large. In this case, a large
quantity of heat can be removed from the
lower temperature to the higher temperature
by doing very small amount of work. The
coefficient of performance is very small when
the temperature difference is large. That means
a small quantity of heat will be removed even
when a large amount of work is done.

e N\

Example 4.10: Carnot engine:

A Carnot engine receives 2.0 kJ of heat from
a reservoir at 500 K, does some work, and
rejects some heat to a reservoir at 350 K.
(a) How much work does it do? (b) how much
heat is rejected. (c) what is its efficiency?
Solution: The heat Q_ rejected by the engine
is given by 350K

1.
=—Q0, —=—(2000))——

=-140017J

From the First law, the work W done by the
engine is,
W=0Q,+Q.=2000] + (-1400J)

=600J
Efficiency of the Carnot engine is,
n=1-2c =1-32% _530-30%
T 500K

H
Is there any simple way to calculate

\efficiency?

J

4.11.3 The Second Law of Thermodynamics
and the Carnot Cycle:

"The Carnot engine is the most efficient
heat engine. Also, all Carnot engines operating
between the same two temperatures have the
same efficiency, irrespective of the nature of
the working substance”.

We have made two very important statements

here.

1. Carnot engine is the most efficient heat
engine, and
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2. EfficiencyofaCarnotengineisindependent
of its working substance.

We can also show that “A Carnot
refrigerator has a greater coefficient of
performance among all the refrigerators
working between the same two temperatures.”
4.12 Sterling Cycle:

Pressure

Fig. 4.28: Sterling cycle, p-V diagram.

This is a closed thermodynamic cycle. The
Sterling engine is based on this cycle shown
in Fig. 4.28. The working substance used in
a Sterling engine is air, helium, hydrogen,
nitrogen etc. All the processes in the Sterling
cycle are reversible processes. When the gas
is heated, the Sterling engine produces useful
work. When work is done on the gas, it works
as a refrigerator. This is reverse working of
a Sterling cycle. The reversed Sterling cycle
is extensively used in the field of cryogenics
to produce extremely low temperatures or to
liquefy air or gases mentioned above.

The ideal Sterling cycle has two
isothermal processes AB and CD. Two
isobaric processes BC and DA connect the
two isothermal processes. Heat is absorbed
at constant temperature T, and rejected at
constant temperature T_. The four processes
in a Sterling cycle are described briefly in the
following.

* Isothermal expansion (AB): The gas is
heated by supplying heat Q, at constant

temperature T . Useful work is done by the
gas in this part of the cycle.

* Isochoric process (BC): Part of the heat
absorbed (Q,,) by the gas in the previous
part of the cycle is released by the gas to
the refrigerator. This heat (Q) is used in the
next part of the cycle. The gas cools down
to temperature T_.

* Isothermal compression (CD): The heat
generated in this part of the cycle (Q.)
is rejected to the coolant (sink). The
temperature of the gas is maintained at T
during this process.

e Isobaric heat absorption (DA): The
compressed gas absorbs heat (Q) during
this process. Its temperature is increased to
T.

The cycle repeats when the process

reaches the point A.
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1. Choose the correct option.

i)

i)

A gas in a closed container is heated
with 10J of energy, causing the lid of the
container to rise 2m with 3N of force.
What is the total change in energy of the

system?
(A) 10J (B) 4J
(C) -10J (D) - 4J

Which of the following is an example of
the first law of thermodynamics?

(A) The specific heatof an objectexplains
how easily it changes temperatures.
(B)While melting, an ice cube remains
at the same temperature.

(C) When a refrigerator is unplugged,
everything inside of it returns to room
temperature after some time.

(D) After falling down the hill, a ball's
kinetic energy plus heat energy equals
the initial potential energy.

Efficiency of a Carnot engine is large
when

(A) T, is large (B) T, is low
(C)T,-T_islarge (D) T, - T_is small
The second law of thermodynamics
deals with transfer of:

(A) work done (B) energy

(C) momentum (D) heat

During refrigeration cycle, heat is
rejected by the refrigerant in the :

(A) condenser (B) cold chamber

(C) evaporator (D) hot chamber

2. Answer in brief.

)

A gas contained in a cylinder surrounded
by a thick layer of insulating material is
quickly compressed. (a) Has there been
a transfer of heat? (b) Has work been
done?

Give an example of some familiar
process in which no heat is added to
or removed form a system, but the
temperature of the system changes.

i)

iv)
v)

3.
1)

i)

Give an example of some familiar
process in which heat is added to an
object, without changing its temperature.
What sets the limits on efficiency of a
heat engine?

Why should a Carnot cycle have two
isothermal two adiabatic processes?

A mixture of hydrogen and oxygen is
enclosed in arigid insulting cylinder. Itis
ignited by a spark. The temperature and
the pressure both increase considerably.
Assume that the energy supplied by the
spark is negligible, what conclusions
may be drawn by application of the first
law of thermodynamics?

A resistor held in running water carries
electric current. Treat the resistor as
the system (a) Does heat flow into the
resistor? (b) Is there a flow of heat
into the water? (c) Is any work done?
(d) Assuming the state of resistance to
remain unchanged, apply the first low of
thermodynamics to this process.

A mixture of fuel and oxygen is burned in
a constant-volume chamber surrounded
by a water bath. It was noticed that the
temperature of water is increased during
the process. Treating the mixture of fuel
and oxygen as the system, (a) Has heat
been transferred ? (b) Has work been
done? (c) What is the sign of AU ?
Draw a p-V diagram and explain the
concept of positive and negative work.
Give one example each.

A solar cooker and a pressure cooker
both are used to cook food. Treating
them as thermodynamic systems, discuss
the similarities and differences between
them.
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10.

A gas contained in a cylinder fitted with
a frictionless piston expands against a
constant external pressure of 1 atm from
a volume of 5 litres to a volume of 10
litres. In doing so it absorbs 400 J of
thermal energy from its surroundings.
Determine the change in internal energy
of system. [Ans: 106.65 J]
A system releases 125 kJ of heat while
104 kJ of work is done on the system.
Calculate the change in internal energy.
[Ans: AU =21 kJ]
Efficiency of a Carnot cycle is 75%.
If temperature of the hot reservoir is
727°C, calculate the temperature of the
cold reservoir. [Ans: 23°C]
A Carnot refrigerator operates between
250°K and 300°K. Calculate its
coefficient of performance. [Ans: 5]
An ideal gas is taken through an
isothermal process. If it does 2000 J of
work on its environment, how much heat
is added to it? [Ans: Zero]
An ideal monatomic gas is adiabatically
compressed so that its final temperature
is twice its initial temperature. What is
the ratio of the final pressure to its initial
pressure? [Ans: 5.6]
A hypothetical thermodynamic cycle is
shown in the figure. Calculate the work
done in 25 cycles.
P(10°Pa)

10 /
N

2 4
_—

— WA NN Q 0 O

6 V(10'm’)

[Ans: 7.85 x 10*J]

11. The figure shows the V-T diagram for

12.

one cycle of a hypothetical heat engine
which uses the ideal gas. Draw (a) the
p-V diagram and p-T diagram of the

system.
V A
b
a
C
d
> T
p s c
d
b
a
>V
p A c
d
b
a
> T
[Ans: (a)]
[Ans: (b)]

A system is taken to its final state from
initial state in hypothetical paths as
shown figure calculate the work done in
each case.

p(10°Pa)
A A > B
P' (N \ 4
D < C
2 V() 6

[Ans: AB=2.4x10°J,CD=8x10°J, BC and
DA zero, because constant volume change]
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5. Oscillations

C) Can you recall? N

1. What do you mean by linear motion
and angular motion?

2. Can you give some practical examples
of oscillations in our daily life?

3. What do you know about restoring
force?

4. All musical instruments make use of
oscillations, can you identify, where?

5. Why does a ball floating on water
bobs up and down, if pushed down and

released?
& J/
5.1 Introduction:

Oscillation is a very common and

interesting phenomenon in the world of Physics.
In our daily life we come across various
examples of oscillatory motion, like rocking
of a cradle, swinging of a swing, motion of the
pendulum of a clock, the vibrations of a guitar
or violin string, up and down motion of the
needle of a sewing machine, the motion of the
prongs of a vibrating tuning fork, oscillations
of a spring, etc. In these cases, the motion
repeated after a certain interval of time is a
periodic motion. Here the motion of an object
is mostly to and fro or up and down.

Oscillatory motion is a periodic motion. In
this chapter, we shall see that the displacement,
velocity and acceleration for this motion can be
represented by sine and cosine functions. These
functions are known as harmonic functions.
Therefore, an oscillatory motion obeying such
functions is called harmonic motion. After
studying this chapter, you will be able to
understand the use of appropriate terminology
to describe oscillations, simple harmonic
motion (S.H.M.), graphical representations
of S.H.M., energy changes during S.H.M.,
damping of oscillations, resonance, etc.
5.2 Explanation of Periodic Motion:

Any motion which repeats itself after

a definite interval of time is called periodic
motion. A body performing periodic motion
goes on repeating the same set of movements.
The time taken for one such set of movements
is called its period or periodic time. At the end
of each set of movements, the state of the body
is the same as that at the beginning. Some
examples of periodic motion are the motion
of the moon around the earth and the motion
of other planets around the sun, the motion of
electrons around the nucleus, etc. As seen in
Chapter 1, the uniform circular motion of any
object is thus a periodic motion.

Another type of periodic motion in
which a particle repeatedly moves to and
fro along the same path is the oscillatory or
vibratory motion. Every oscillatory motion is
periodic but every periodic motion need not be
oscillatory. Circular motion is periodic but it is
not oscillatory.

The simplest form of oscillatory periodic
motion is the simple harmonic motion in which
every particle of the oscillating body moves
to and fro, about its mean position, along a
certain fixed path. If the path is a straight line,
the motion is called linear simple harmonic
motion and if the path is an arc of a circle,
it is called angular simple harmonic motion.
The smallest interval of time after which the to
and fro motion is repeated is called its period
(T) and the number of oscillations completed
per unit time is called the frequency (n) of the
periodic motion.

) Can you tell?

Is the motion of a leaf of a tree blowing in
the wind periodic?
5.3 Linear
(S.H.M.):
Place a rectangular block on a smooth
frictionless horizontal surface. Attach one end

Simple Harmonic Motion
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of a spring to a rigid wall and the other end to
the block as shown in Fig. 5.1. Pull the block
of mass m towards the right and release it. The
block will begin its to and fro motion on either
side of its equilibrium position. This motion is

linear simple harmonic motion.
1 F

Block

:_x’i Frictionless

5.1 (a) Stretched ! surface

fF=0
i Frictionless
i surface
5.1( ¢) Compressed i F=-kx E iFrictionless
i > isurface

Fig. 5.1 (a), (b) and (c): Spring mass oscillator.

) Remember this> ~

Forsuch a motion, as a convention, we shall
always measure the displacement from the
mean position. Also, as the entire motion
is along a single straight line, we need not
use vector notation (only 4 signs will be
enough). )

Fig. 5.1(b) shows the equilibrium position
in which the spring exerts no force on the
block. If the block is displaced towards the
right from its equilibrium position, the force
exerted by the spring on the block is directed
towards the left [Fig. 5.1(a)]. On account of its
elastic properties, the spring tends to regain its
original shape and size and therefore it exerts a
restoring force on the block. This is responsible
to bring it back to the original position. This
force is proportional to the displacement but its
direction is opposite to that of the displacement.
If x is the displacement, the restoring force f is
given by,

|

S =—kx - (5.1)
where, k is a constant that depends upon the
elastic properties of the spring. It is called the
force constant. The negative sign indicates
that the force and displacement are oppositely
directed.

If the block is displaced towards left from
its equilibrium position, the force exerted by
the spring on the block is directed towards the
right and its magnitude is proportional to the
displacement from the mean position. (Fig.
5.1(c))

Thus, f = - kx can be used as the equation
of motion of the block.

Now if the block is released from the
rightmost position, the restoring force exerted
by the spring accelerates it towards its
equilibrium position. The acceleration (a) of
the block is given by,

a=L—[£)s

- (5.2)
m m

where, m is mass of the block. This shows
that the acceleration is also proportional to
the displacement and its direction is opposite
to that of the displacement, i.e., the force and
acceleration are both directed towards the
mean or equilibrium position.

As the block moves towards the mean
position, its speed starts increasing due to
its acceleration, but its displacement from
the mean position goes on decreasing. When
the block returns to its mean position, the
displacement and hence force and acceleration
are zero. The speed of the block at the mean
position becomes maximum and hence its
Kinetic energy attains its maximum value.
Thus, the block does not stop at the mean
position, but continues to move beyond the
mean position towards the left. During this
process, the spring is compressed and it exerts
a restoring force on the block towards right.
Once again, the force and displacement are
oppositely directed. This opposing force
retards the motion of the block, so that the
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speed goes on reducing and finally it becomes
zero. This position is shown in Fig. 5.1(c). In
this position the displacement from the mean
position and restoring force are maximum.
This force now accelerates the block towards
the right, towards the equilibrium position. The
process goes on repeating that causes the block
to oscillate on either side of its equilibrium
(mean) position. Such oscillatory motion along
a straight path is called linear simple harmonic
motion (S.H.M.). Linear S.H.M. is defined as
the linear periodic motion of a body, in which
force (or acceleration) is always directed
towards the mean position and its magnitude
is proportional to the displacement from the
mean position.

r—C) Use your brain powerH

If there is friction between a block and
the resting surface, how will it govern the
_ motion of the block?

J

) Remember this> ~

A complete oscillation is when the object

goes from one extreme to other and back to

the initial position.

The conditions required for simple harmonic

motion are:

1. Oscillation of the particle is about a
fixed point.

2. The net force or acceleration is always
directed towards the fixed point.

3. The particle comes back to the fixed
point due to restoring force.

Harmonic oscillation is that oscillation

which can be expressed in terms of a single

harmonic function, such as x = a sinwt or

X =a coswt

Non-harmonic oscillation is that oscillation

which cannot be expressed in terms of single

harmonic function. It may be a combination

of two or more harmonic oscillations such

as X =asinot + b sin2wt , etc.

Some experiments described below can be
performed in the classroom to demonstrate
S.H.M. Try to write their equations.
Hydrometer

(@) A hydrometer is
immersed in a glass jar
filled with water. In the
equilibrium  position
it floats vertically in
water. If it is slightly

s

depressed and released, it bobs up and down
performing linear S.H.M.

(b) A U-tube is filled with a sufficiently long
column of mercury. Initially when both the

Mercury

arms of U tube are exposed
to atmosphere, the level of
mercury in both the arms

is the same. Now, if the level of mercury
in one of the arms is depressed slightly
and released, the level of mercury in each
arm starts moving up and down about the
equilibrium position, performing linear
S.H.M.

. J

5.4 Differential Equation of S.H.M.:

In a linear S.H.M., the force is directed
towards the mean position and its magnitude
is directly proportional to the displacement
of the body from mean position. As seen in
Eq. (5.1),

f=-kx
where k is force constant and x is displacement
from the mean position.
According to Newton’s second law of motion,

f=ma .. ma=-kx - (5.3)
The velocity of the particle is, V=§
t
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. . d d*x
and its acceleration, a=— =

dt — di®
Substituting itin Eq. (5.3), we get
dx B
dt
d’x k
+—x=0 --- (5.4
dt’ mx 4

Substituting E:a)z, where o is the

angular frequency, "
2
I;C+oo2x =0 --- (5.5)

Eq. (5.5) is the differential equation of linear
S.H.M.

) Can you tell? N

Why is the symbol ® and also the term

angular frequency used for a linear motion?
& J

e 2

Example 5.1 A body of mass 0.2 kg
performs linear S.H.M. It experiences
a restoring force of 0.2 N when its
displacement from the mean position is 4
cm. Determine (i) force constant (ii) period
of S.H.M. and (iii) acceleration of the
body when its displacement from the mean
position is 1 cm.
Solution: (i) Force constant,

k="f/x

=(0.2)/0.04 =5 N/m

(i) Period T=27/w

_27'[\/7 2%,/02 =04rs

(iii) Acceleratlon
a=—o’x = ——x = —ixO 04=-1ms™
m

5.5 Acceleration (a), Velocity (v) and
Displacement (x) of S.H.M. :

We can obtain expressions for the
acceleration, velocity and displacement of
a particle performing S.H.M. by solving the
differential equation of S.H.M. in terms of
displacement x and time t. ,

d
From Eq. (5.5), we have I;C+a)2x =0

d’x )
" —2=—0) X
dt

2

X
But @ =—— is the acceleration of the particle
performing S.H.M.

. 2
- d=—W X

- (5.6)

--- (5.7)
This is the expression for acceleration in terms
of displacement x. 5

From Eg. (5.6), we have —f =-w°x

d(dxj ,a
L —| — |=-ox
dr\_dt

Integrating both the sides, we get
IV dv =-o"|xdx

v o’x’

- (5.8)

where C is the constant of integration.
Let A be the maximum displacement
(amplitude) of the particle in S.H.M.
When the particle is at the extreme
position, velocity (V) is zero.
Thus, at x=%4, v=0
Substituting in Eqg. (5.8), we get

2 42
0=-2 4 +C
2
w’ A
SnC=+ --- (5.9)
Using C in Eq. (5.8), we get
v o’x? 0’4
7 T2 2
v =t A --- (5.10)

This is the expression for the velocity of a
particle performing linear S.H.M. in terms of
displacement X. e

Substituting v = " in Eq. (5.10), we get

T RGN



= wdt
A? = x?

Integrating both the sides, we get
[~ ofar
VA? —x?

sin 1&— =0t +¢ — (5.11)
Here ¢ is the constant of integration. To
know ¢, we need to know the value of x at
any instance of time t, most convenient being
t=0.

~.x=Asin(ot+9¢) --- (5.12)

This is the general expression for the

displacement (x) of a particle performing
linear S.H.M. at time t. Let us find expressions
for displacement for two particular cases.
Case (i) If the particle starts S.H.M. from the
mean position, x =0att=0
Using Eq. (5.11), we get ¢ = sin™ (%) =0or

Substituting in Eq. (5.12), we get

x =+ Asin(ot) --- (5.13)
This is the expression for displacement at any
instant if the particle starts S.H.M. from the
mean position. Positive sign to be chosen if it
starts towards positive and negative sign for
starting towards negative.
Case (ii) If the particle starts S.H.M. from the
extreme position, x=*+4 at =0

s ¢ =sin"' T1=Z or 3
A) 2 2

Substituting in Eq. (5.12), we get
x:Asin(wt+ﬂj or x:Asin(a)t+3ﬂj
2 2

. x=tA4cos(wr) --- (5.14)
This is the expression for displacement at any
instant, if the particle starts S.H.M. from the
extreme position. Positive sign for starting
from positive extreme position and negative
sign for starting from the negative extreme
position.

( \

In the cases (i) and (ii) above, we have used
the phrase, “if the particle starts S.H.M......”
More specifically, it is not the particle that
starts its S.H.M., but we (the observer)
start counting the time t form that instant.
The particle is already performing its
motion. We start recording the time as per
our convenience. In other words, t = 0 (or
initial condition) is always subjective to the
observer.

& J

Expressions of displacement (x), velocity (v)
and acceleration (a) at time t:
From Eq. (5.12), * = 4 sin(oz +¢)

.'.Vz%zAa)cos(a)t+¢)

dv :
a=—= Aw® sin (ot +¢)

( )
Example 5.2: A particle performs linear

S.H.M. of period 4 seconds and amplitude
4 cm. Find the time taken by it to travel a
distance of 1 cm from the positive extreme
position.
Solution: x = A4 sin(wt+¢)
Since particle performs S.H.M.
positive extreme position, ¢ = 2 and
from data
x=A-1=3cm

. 3=4sin 2—7rt+E

T 2

-

from

2r T
=cos—1t =cos—t
4 2

4
=414 = 414x 2| - t=046s
) 180

[Or, %t =414.. t=0.46 s}

Example 5.3: A particle performing
linear S.H.M. with period 6 second is
at the positive extreme position at t = 0.
The particle is found to be at a distance
of 3 cm from this position at time t =7s,

before reaching the mean position. Find the
N\ J
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amplitude of S.H.M.

Solution: x = A4sin (ot +¢)

Since particle starts (t = 0) from positive
extreme position, ¢ =w/2and x=4-3

= Asin(a)t+zj
2

A—3:Asin(2—ﬂt+£]
T 2
A-3 . (2& T
———=sIn| — xX7+—
A 6 2
-3 . (Tr =«
. ——=sin| —+—
A 3 2
A— T T b4
——— =sin| —+— |=cos—=—
A 3 2] 3
2A—-6=A
A=6cm

Example 5.4: The speeds of a particle
performing linear S.H.M. are 8 cm/s and
6 cm/s at respective displacements of 6 cm
and 8 cm. Find its period and amplitude.
Solution:

V=0 (A2 - xz)

§:w,/(A2—62)Ori_a) (A*-36)
6 wf(A-8) 3 ofA-64)

S A=10cm
V=0 (A2 —xlz)

8= 2" (102 —62) g2y
T T

T=6.28s

. J

Extreme values of displacement (x), velocity
(v) and acceleration (a):

1) Displacement: The general expression for
displacementxin S.H.M. is x = 4 sin (ot +¢)
At the mean position, (ot +¢) =0orn
X =0,

Thus, at the mean position, the
displacement of the particle performing
S.H.M. is minimum (i.e. zero).

.. Y4 n
At the extreme position, (@t +¢)= 5 o

sx=Asin(ot+¢)

=+4

Lx=*xA4 sinZ SoX,

Thus, at the extreme position the displacement

of the particle performing S.H.M. is maximum.

2) Velocity: According to Eq. (5.10) the

magnitude of velocity of the particle performing

SHM.is v=+wy4®-x>

At the mean position, x=0..v, =t 4w,
Thus, the velocity of the particle in S.H.M.

IS maximum at the mean position.

At the extreme position, * = £4 - vy =0.
Thus, the velocity of the particle in S.H.M.

IS minimum at the extreme positions.

3) Acceleration: The magnitude of the

acceleration of the particle in S.H.M is o*x

At the mean position x=(, so that the

acceleration is minimum. .. a,, =0.

At the extreme positions y=+ 4, so that the

acceleration is maximuma__ = Fo’4

/—C) Can you tell? ~

1. State atwhich pointduring an oscillation
the oscillator has zero velocity but
positive acceleration?

2. During which part of the simple
harmonic motion velocity is positive
but the displacement is negative, and
vice versa?

3. During which part of the oscillation the
two are along the same direction?

J
N

Example 5.5: The maximum velocity of a
particle performing S.H.M. is 6.28 cm/s. If
the length of its path is 8 cm, calculate its
period.

Solution:

v, =628—2=27" and A—4cm
S S

A =Aa)=A2—ﬂ
T

S2m :42—ﬂ
T

T =4s

\(
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Example 5.6: The maximum speed of a
particle performing linear S.H.M is 0.08
m/s. If its maximum acceleration is 0.32 m/
s?, calculate its (i) period and (ii) amplitude.

Solution:
amax _ Aa)z e _2_7[ . 032 272,'
0 v,. 4o T 008 T
T=157s

.. 2
@i) v, . =Aa):A77T SA=2cm

5.6: Amplitude(A), Period(T) and Frequency

(n) of SH.M. :

5.6.1 Amplitude of S.H.M.:

C @ ® i
N (0] P M

|

Fig. 5.2 S.H.M. of a particle.

Consider a particle P performing S.H.M.
along the straight line MN (Fig. 5.2). The
centre O of MN is the mean position of the
particle.

The displacement of the particle as given
by Eq. (5.12) is x = 4 sin(wt +¢)

The particle will have its maximum
displacement when sin(wt+¢)==1, ie.,
when x=+4. This distance A is called the
amplitude of S.H.M.

The maximum displacement of a particle
performing S.H.M. from its mean position is
called the amplitude of S.H.M.

5.6.2 Period of S.H.M.:

The time taken by the particle performing
S.H.M. to complete one oscillation is called the
period of S.H.M.

Displacement of the particle at time t is
given by x = A4 sin(wt +¢)

After a time z:(r+2”jthe displacement will
[
be

x=A sin{a)(tjtz—njjtqb}
1)

Sx=A4 sin(a)t+27r +¢)
Sx=4 sin(a)t+¢)

|
o HE

This result shows that the particle is at the
o\ . 2
same position after a time T That means,

()
the particle completes one oscillation in time

27 1t can be shown that t:T:Z—ﬂ is the

@ . . L @
minimum time after which it repeats.

Hence its period T is given by T 2

From Eq.(5.4) and Eq.(5.5) @
k _ force perunit displacement

o =
m mass
=acceleration per unit displacement
2
o T=

\/ acceleration per unit displacement

m
= 277.' —
Also, T ,/ f

5.6.3 Frequency of S.H.M.:

The number of oscillations performed by
a particle performing S.H.M. per unit time is
called the frequency of S.H.M.

In time T, the particle performs one
oscillation. Hence in unit time it performs —
oscillations. T
Hence, frequency n of S.H.M. is given by

Il o 1 |k

n=?=g=g ; ---(5.16)

- (5.15)

Combination of springs: A number of\
springs of different spring constants can be
combined in series (Figure A) or in parallel
(Figure B) or both.

Series combination (Figure A): In this case,
all the springs are connected one after the
other forming a single chain. Consider
an arrangement of two such springs of
spring constants k and k,. If the springs are
massless, each will have the same stretching
force as f. For vertical arrangement, it
will be the weight mg. If e, and e, are the
respective extensions, we can write,

f

=iande2 =
1 2

f =ke =k,e,. . e

The total extension is

e=¢e +e, =f[ki+kij
1 2/)"




If k, is the effective spring constant (as if )
there is a single spring that gives the same
total extension for the same force), we can

write,
L (1+1]_1 11

S—=—t—
ks kl k2

For a number of such (massless) springs, in

series, L _1, 1, _y L

k., k k, ~\ K,
For only two massless springs of
spring constant k each, in series,

_ kk,  Product
' k,+k, Sum
For n such identical massless springs, in

series, k, =E

U

N\

777
/

Fig. B

Parallel combination (Figure B): In such a
combination, all the springs are connected
between same two points, one of them is the
support and at the other end, the stretching
force f is applied at a suitable point.
Irrespective of their spring constants, each
spring will now have the same extension e.
The springs now share the force such that in
the equilibrium position, the total restoring
force is equal and opposite to the stretching

force f.

Let f, =ke, f, =k,e,...... be the individual
restoring forces.

If kp is the effective spring constant, a
single spring of this spring constant will be
stretched by the same extension e, by the
same stretching force f.

S f=ke=fi+f,+...=ketke+..
sk, =k k. =Dk,

For m such identical massless springs of
spring constant k each, in parallel, k, = mk

|\ J

5.7 Reference Circle Method:

Figure 5.3 shows a rod rotating along a
vertical circle in the x-y plane. If the rod is
illuminated parallel to x-axis from either side
by a linear source parallel to the rod, as shown
in the Fig. 5.3, the shadow (projection) of the
rod will be produced on the y-axis. The tip of
this shadow can be seen to be oscillating about
the origin, along the y-axis.

shadow or Reference
_ projectiog ___________ angle <
%

\“ ¢
by
,." X €—
:" <«
b

shadow or

projection
Fig 5.3: Projection of a rotating rod.
We shall now prove that motion of

the tip of the projection is an S.H.M. if the
corresponding motion of the tip of the rod
is a U.C.M. For this, we should take the
projections of displacement, velocity, etc. on
any reference diameter and confirm that we
get the corresponding quantities for a linear
S.H.M.

Figure 5.4 shows the anticlockwise
uniform circular motion of a particle P, with
centre at the origin O. Its angular positions are
decided with the reference OX. It means, if the
particle is at E, the angular position is zero, at

¢'~~



Fitis90°=Z" at G itis 180°= n°, and so on. If
it comes to E again, it will be 360° = 2= (and
not zero). Let ¥ = OP be the position vector of

this particle. yA
F
P
M/'N";"@
y ‘{wt VQ PO
O O=wt+¢
H

Fig 5.4: S.H.M. as projection of a U.C.M.

At t = 0, let the particle be at P, with

reference angle ¢. During time t, it has
angular displacement wt . Thus, the reference
angle at time t is 6 =(wt +¢). Let us choose
the diameter FH along y-axis as the reference
diameter and label OM as the projection of
r = OP on this.
Projection of displacement: At time t, we
get the projection or the position vector
OM =OPsinf =y = rsin(a)t+¢). This is the
equation of linear S.H.M. of amplitude r. The
term @ can thus be understood as the angular
velocity of the reference circular motion. For
linear S.H.M. we may call it the angular
frequency as it decides the periodicity of the
S.H.M. In the next section, you will come to
know that the phase angle 6 =(wt +¢) of the
circular motion can be used to be the phase of
the corresponding S.H.M.

7" = rocos(wt+¢)

Fig 5.5: Projection
of velocity.

Projection of velocity: Instantaneous velocity
of the particle P in the circular motion is the
tangential velocity of magnitude ro as shown
in the Fig. 5.5.

Its projection on the reference diameter
will be v, =rwcosd =rwcos(wt+¢). This
is the expression for the velocity of a particle
performing a linear S.H.M.

Projection of acceleration: Instantaneous
acceleration of the particle P in circular
motion is the radial or centripetal acceleration
of magnitude ro®, directed towards O. Its
projection on the reference diameter will be
a,=—ro’sing =—ro’sin(or+¢)=-0’y

Again, this is the corresponding
acceleration for the linear S.H.M.

Fromthis analogy itis clear that projection
of any quantity for a uniform circular motion
gives us the corresponding quantity of linear
S.H.M. This analogy can be verified for any
diameter as the reference diameter. Thus, the
projection of a U.C.M. on any diameter is an
S.H.M.

5.8 Phase in S.H.M.:

Phase in S.H.M. (or for any motion) is
basically the state of oscillation. In order to
know the state of oscillation in S.H.M., we
need to know the displacement (position), the
direction of velocity and the oscillation number
(during which oscillation) at that instant of
time. Knowing only the displacement is not
enough, because at a given position there are
two possible directions of velocity (except
the extreme positions), and it repeats for
successive oscillations. Knowing only velocity
is not enough because there are two different
positions for the same velocity (except the
mean position). Even after this, both these
repeat for the successive oscillations.

Hence, to know the phase, we need a
quantity that is continuously changing with
time. It is clear that all the quantities of linear
S.H.M. (x, v, a etc) are the projections taken
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on a diameter, of the respective quantities for
the reference circular motion. The angular
displacement 6 = (wt +¢) can thus be used as
the phase of S.H.M. as it varies continuously
with time. In this case, it will be called as the
phase angle.

Special cases:

(i) Phase 6 = 0 indicates that the particle
is at the mean position, moving to the
positive, during the beginning of the first
oscillation. Phase angle 6 =360° or 27°
is the beginning of the second oscillation,
and so on for the successive oscillations.

(i) Phase 6 =180° or z° indicates that during
its first oscillation, the particle is at the
mean position and moving to the negative.
Similar state in the second oscillation will
have phase 6 = (360 +180) or (27 +7)°,
and so on for the successive oscillations.

AN
(iii) Phase 6 =90’ Or(Ej indicates that
the particle is at the positive extreme

position  during  first  oscillation.
For the second oscillatiorcw it will be

0 = (36O+90)0 or| 27 +% ., and so on
for the successive oscillcations.
) 3 -
(iv) Phase 6 = 270° or(jﬂj indicates that the

particleisatthenegativeextremepositionduring
the first oscillation. For the second oscilclation

it will be 6 =(360+270)" or 27r+37ﬂ , and

so on for the successive oscillations.
( A
Example 5.7: Describe the state of

oscillation if the phase angle is 1110°.
Solution: 1110” =3x360" +30°

3x360° plus something indicates 4%
oscillation. Now, Asin30° =7

Thus, phase angle 1110° indicates that
during its 4" oscillation, the particle is at
+A/2 and moving to the positive extreme.
Example 5.8: While completing its third

( )
. -3 : .
is at T\/_ A, heading to the mean position.

Determine the phase angle.
Solution:

_ 3 c c
Asin0, :T\/_A.'. 0, 2(77,' +%j or(Zﬂ—%j

From negative side, the particle is heading to
the mean position. Thus, the phase angle is
in the fourth quadrant for that oscillation.

-0 = (271 —Ej
3

As it is the third oscillation, phase

9=2x27r+01.'.9:47r+(27r—%j

:67:—5:(17—”)
3 3

oscillation during linear S.H.M., a particle
N\ J

J

N\

5.9. Graphical Representation of S.H.M.:
(a) Particle executing S.H.M., starting from
mean position, towards positive:

As the particle starts from the mean position
Fig (5.6), towards positive, ¢ =0

.. displacement x = A4 sin ¢

Velocity v = Aw coswt

Acceleration a= —Aw” sin ot

oo [Ta]T2]sma]T

5T /4

3_71 S

(9) 0 T 2 2n 2

T
2

1] 0 A 0 -A| O A
V) |Ao| 0 |-Ao| O |Aw| O
@[ 0 [-Ao*| O [Aw?| O

Conclusions from the graphs:

» Displacement, velocity and acceleration of
S.H.M. are periodic functions of time.

e Displacement time curve and acceleration
time curves are sine curves and velocity
time curve is a cosine curve.

e There is phase difference of n/2 radian
between displacement and velocity.

* There is phase difference of n/2 radian
between velocity and acceleration.

-Aw?
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* There is phase difference of = radian
between displacement and acceleration.

» Shapes of all the curves get repeated after
2w radian or after atime T.

N
+af---
5 o N2 : + Time (7)
4 |T C
é 7’:{4 37?4 E s:r/4 (2)°F !
R e e S
A ;
R N I N
. \ VAN
G fo oy F Nista
s °[74 ) > Time (1)
- = e I\ ()
SeI0] SEEREER A
g P
e WU U N U S S—
.9 ' P\
S ' i Voo
= H 3T/4N 5;T/4
s Nt Az TN | > Time ()
2 ! AN C
< ol N LI\ g-)

Fig. 5.6: (a) Variation of displacement with
time, (b) Variation of velocity with time,
(c) Variation of acceleration with time.

(b) Particle performing S.H.M., starting
from the positive extreme position.

As the particle starts from the positive extreme
position Fig. (5.7), ¢ =%

.. displacement, x = A4 sin (a)t +r/2 ) =Acoswt

Velocit _dx _d(Acosor)
elocity, v=— - =——

Acceleration,
d(—Awsi t
v _ (—Aosin(wt))
dt dt
® T/4 | T2

=—Awsin(ot)

=—Aw’ cos(a)t)

3T/4| T |5T/4

(x) o[ -A] o[ AT o
(V)

@ |-Ao?| 0 |Aw?*| O

0
T
@) o T D) 2t | 5 | 3=m
A
0

A
g o \ """ :
AW
§ 0 T/4i 172 / ,T :ST/4> Time (7)
g \ et I\ @
[ -a 1 1 H H
----- s R
A o
e
> i : E ;
S o 374 ST e ()
© : i :
> : . (b)
a0 LN | L LN
Ao P
:+aw2 """ ‘ \ E
g : P
S : i '
8 o L\ > «> Time (7)
§ i T/4 (C)
< '
‘G(D -----------

Fig. 5.7: (a) Variation of displacement with
time, (b) Variation of velocity with time,
(c) Variation of acceleration with time.

5.10 Composition of two S.H.M.s having
same period and along the same path:
Consider a particle subjected
simultaneously to two S.H.M.s having the
same period and along same path (let it be
along the x-axis), but of different amplitudes
and initial phases. The resultant displacement
at any instant is equal to the vector sum of its
displacements due to both the S.H.M.s at that
instant.
Equations of displacement of the two S.H.M.s
along same straight line (x-axis) are
x, = A sin (ot + ¢)and x,=A, sin (ot + ¢,)
The resultant displacement (x) at any instant
(t) is given by x = X, + X,
x =A_ sin (ot+ @) +A, sin (ot + ¢,)
S X=A, sin otcos ¢ + A cos ot sind;
+ A, sin ot cos ¢, + A, cos ot sin ¢,
A, A, ¢ and ¢, areconstantsand otisvariable.
Thus, collecting the constants together,
x = (A, cos¢ +A, cos ¢,) sin ot +
(A, sin ¢, + A, sin ¢,) cos ot
As A, A, ¢ and ¢,are constants, we can
combine them in terms of another convenient
constants R and & as
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Rcosd=A, cos ¢, +A, cosd, - (5.17)
and Rsind = A sing +A,sing, ---(5.18)
“. X =R (sin ot cos & + cos wt sin d)

. X=Rsin (ot + d)

This is the equation of an S.H.M. of the
same angular frequency (hence, the same
period) but of amplitude R and initial phase 5.
It shows that the combination (superposition)
of two linear S.H.M.s of the same period and
occurring a long the same path is also an
S.H.M.

Resultant amplitude,

R= \/(Rsiné)z +(Rcos§)2
Substituting from Eq. (5.17) and Eq. (5.18), we
get

R2= A2+ A2+ 2A Acos(d - ¢,)
" R=\4} + 42 +24,4, cos(p, ¢, ) - (5.19)
Initial phase (5) of the resultant motion:
Dividing Eq. (5.18) by Eq. (5.17), we get
Rsiné _ Asin ¢, + A,sing,
Rcoss A,cos ¢, + A,cosd,

- -1 AlSin ¢1 + A25in¢z
. o=tan (Alcos o, + Azcosq’)zj - (5.20)

Special cases: (i) If the two S.H.M.s are in
phase, (¢, - ¢,)=0", .. cos (¢, - $,) = 1.
CR=\A2+ 42 +24, 4, =+(4, + 4,). Further,
ifA =A=A, wegetR=2A

(ii) If the two S.H.M.s are 90° out of phase,
(4, - 6,)=90° .cos (4, - 4,)=0.

R =\/m Further, if A=A, = A, we
get, R= /2 A

(i) If the two S.H.M.s are 180° out of phase,
(¢, - ¢,)=180° .cos (¢, - #,)=-1

S R=\JA + 42244, - R=]4 - 4)
Further, if A = A,=A,we getR=0

Activity \

Tie a string horizontally tight between
two vertical supports. To this string, tie
three pendula, two of them (A and B) of
equal lengths. Third one (C) need not have
the same length, but not very different.
Oscillate the pendula A and B in a plane
perpendicular to the horizontal string. It
will be observed that pendulum C also
starts oscillating in the same plane, with the
same period as those of A and B.

With this system and procedure, we are
imposing two S.H.M.s of the same period.
The resultant energy transfers through
the strings into the third pendulum C and
it starts oscillating. Special cases (i), (ii)
and (iii) above can be verified by making
suitable changes.

. J

5.11: Energy of a Particle Performing
S.H.M.:

While performing an S.H.M., the particle
possesses speed (hence kinetic energy) at all
the positions except at the extreme positions.
In spite of the presence of a restoring force
(except at the mean position), the particle
occupies various positions. This is an
indication that work is done and the system
has potential energy (elastic - in the case of
a spring, gravitational - for a pendulum,
magnetic - for a magnet, etc.). Total energy of
the particle performing an S.H.M. is thus the
sum of its kinetic and potential energies.

Consider a particle of mass m, performing
a linear S.H.M. along the path MN about the
mean position O. At a given instant, let the
particle be at P, at a distance x from O.

I @ @ i
N O P M
e

Fig. 5.8: Energy in an S.H.M.
\elocity of the particle in S.H.M. is given
as v=wV4’-x* = Awcos(wt+¢)
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where X is the displacement of the particle
performing S.H.M. and A is the amplitude of
S.H.M.

Thus, the Kinetic energy,
1

— 2 2 2 _1 2 2
E, = mo (4*-x )—Ek(A ~x7 )= (5.21)
This is the kinetic energy at displacement x.
Attimet, itis

1 1
E = Emv2 = EmAza)2 cos’ (a)t +¢)

1
= — kA’ cos” (ot +
5 kA cos (wr+¢) (5.22)

Thus, with time, it varies as cos” 6.

The restoring force acting on the particle
at point P is given by f = - kx where k is the force
constant. Suppose that the particle is displaced
further by an infinitesimal displacement dx
against the restoring force f. The external work
done (dW) during this displacement is

aw=f (—dx) = —kx(—dx) = kxdx

The total work done on the particle to
displace it from O to P is given by

W=jc.dW=]‘kxdx=%kx2
0 0

This should be the potential energy (P.E.)

Ep of the particle at displacement x.

L FE :lkx2 :lmcozx2
) 2
Attimet, itis
E :%ka:%kAzsinz(a)t+¢)

- (5.23)

P
= %mAzco2 cos’ (ot +¢)

Thus, with time, it varies as sin’ 0.
The total energy of the particle is the sum

of its kinetic energy and potential energy.
E=E +E,

Using Eq. (5.21) and Eq. (5.23), we get
E =L me’ (A2 —x2)+lma)2x2
2 2

E=—mw A" =—kA" =—
2 m 2 2 m(VmaX) “‘(5.24)

This expression gives the total energy
of the particle at point P. As m, wand A are

constant, the total energy of the particle at any
point P is constant (independent of X andt). In
other words, the energy is conserved in S.H.M.
If n is the frequency in SSHM., o=2zn.
Using this in Eq. (5.24), we get
E= %m(Zﬂn)z A =270 Am
2

= 27'[2;71F -== (525)
Thus, the total energy in S.H.M. is directly
proportional to (a) the mass of the particle
(b) the square of the amplitude (c) the square
of the frequency (d) the force constant, and
inversely proportional to square of the period.

/—C) Can you tell? ~

To start a pendulum swinging, usually you

pull it slightly to one side and release.

* What kind of energy is transferred to the
mass in doing this?

» Describe the energy changes that occur
when the mass is released.

» Is/are there any other way/ways to start

the oscillations of a pendulum? Which

energy is supplied in this case/cases?

\
Special cases: (i) At the mean position, x =0

and velocity is maximum.

Hence E=(E,) =%ma)2A2 and potential
energy (E,) =0

min

(i) At the extreme positions, the velocity of the
particle is zeroand x =+4
1
=—mw°A

Hence E = (Ep )max

energy (E,) . =0

As the particle oscillates, the energy
changes between kinetic and potential. At the
mean position, the energy is entirely Kinetic;
while at the extreme positions, it is entirely
potential. At other positions the energy is
partly kinetic and partly potential. However,
the total energy is always conserved.
(i) IfK.E.=P.E.,

2 and Kinetic

lma)2 (A2 —xz) = lma)zx2 SX =
2 2

5 1
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+4

E
Thusat ¥X=—7= ,the KE.=P.E.= — fora
particle performing linear S.H.M.

2" 4 4
- K.E.=3(P.E)

+4
(iv) At X =— P.E.:%kxz :l(%kyjzﬁ

Thus, at x Zﬂ, the energy is 25% potential
and 75% Kinetic.

The variation of K.E. and P.E. with
displacement in S.H.M. is shown in Fig. (5.9)

-A -AAD 0 +AA~ +A
Displacement
Fig. 5.9: Energy in S.H.M.

( Example 5.9: The total energy of a particle\
of mass 200 g, performing S.H.M. is 102J.
Find its maximum velocity and period if the
amplitude is 7 cm.

Solution:

E :lma)zAz E =5 ln/l(vmwc )2
7 2

2E
. Vmax = -
m
i
v =217 o3162m /s
0.2

cod=2F 4722 306
T A

max

\. J
5.12 Simple Pendulum:

An ideal simple pendulum is a heavy
particle suspended by a massless, inextensible,
flexible string from a rigid support.

A practical simple pendulum is a small
heavy (dense) sphere (called bob) suspended
by a light and inextensible string from a rigid
support.

max

The distance between the point of
suspension and centre of gravity of the bob
(point of oscillation) is called the length of the
pendulum. Let m be the mass of the bob and
T' be the tension in the string. The pendulum
remains in equilibrium in the position OA,
with the centre of gravity of the bob, vertically
below the point of suspension O. If now the
pendulum is displaced through a small angle
0 (called angular amplitude) and released, it
begins to oscillate on either side of the mean
(equilibrium) position in a single vertical
plane. We shall now show that the bob
performs S.H.M. about the mean position for
small angular amplitude 6.

Rigid support

~~.
-----

-----

Fig.5.10: Simple pendulum.

In the displaced position (extreme
position), two forces are acting on the bob.
(i) Force T' due to tension in the string, directed
along the string, towards the support and
(i) Weight mg, in the vertically downward
direction.
At the extreme positions, there should not be
any net force along the string. The component
of mg can only balance the force due to
tension. Thus, weight mg is resolved into two
components;
(i) The component mg cos@ along the string,
which is balanced by the tension T ' and
(i) The component mg sing perpendicular
to the string is the restoring force acting on
mass m tending to return it to the equilibrium
position.

G/ VN



..Restoring force, F =-mgsing --- (5.26)
As g is very small (6 <10°), we can write
sing=9° .. F =—-mg0
From the Fig. 5.10, the small angle 6,=

N %

. F= —mg% —(5.27)
As m, g and L are constant, F oc- X
Thus, for small displacement, the
restoring force is directly proportional to the
displacement and is oppositely directed.
Hence the bob of a simple pendulum
performs linear S.H.M. for small amplitudes.
From Eq. (5.15), the period T of oscillation of
a pendulum from can be given as,
2%
o 2n
- \/ acceleration per unit displacement

Using Eq. (5.27), F = —mg%

: ma——mgi
' a L

. _ X a g g ;. .
-a=—-g— .. —=-===< (in magnitude
L X L L ( 9 )
Substituting in the expression for T, we get,
r=2x |k - (5.28)
g

The Eq. (5.28) gives the expression for the

time period of a simple pendulum. However,

while deriving the expression the following
assumptions are made.

(i) The amplitude of oscillations is very
small (at least 20 times smaller than the
length).

(it) The length of the string is large and

(iii) During the oscillations, the bob moves
along a single vertical plane.

Frequency of oscillation n of the simple

pendulum is
L - (5.29)
T 2n\VL

From the Eq. (5.28), we can conclude the
following for a simple pendulum.
(@) The period of a simple pendulum is
directly proportional to the square root of
its length.

(b) The period of a simple pendulum is
inversely proportional to the square root
of acceleration due to gravity.

(c) The period of a simple pendulum does not
depend on its mass.

(d) The period of a simple pendulum does
not depend on its amplitude (for small
amplitude).

These conclusions are also called the 'laws of

simple pendulum’.

5.12.1 Second’s Pendulum:

A simple pendulum whose period is two
seconds is called second’s pendulum.

Period 7 =27 \/Z
g

. L
.. For a second s pendulum, 2 =27 /—s
g

where L_ is the length of second’s pendulum,
having period T = 2s.

oL =2 - (5.30)

Using this relation, we can find the length
of a second’s pendulum at a place, if we know
the acceleration due to gravity at that place.
Experimentally, if L_is known, it can be used
to determine acceleration due to gravity g at
that place.

( A
Example 5.10: The period of oscillations of

a simple pendulum increases by 10%, when
its length is increased by 21 cm. Find its
initial length and initial period.

[
Solution: T=27I\P
g
100 _ |4
T 110\,

o
T\ 4021

121 =1 +021. 1, =1m

- Period T =27x L =21 /L
g 9.8

=2.006s
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When you perform the experiment to
determine the period of simple pendulum, it
is recommended to keep the amplitude very
small. But how small should it be? And why?

To find this it would be better to
measure the time period for different angular
amplitudes.

Let 7, =2n L be the period for (ideally)

very small angular amplitude and T, be
the period at higher angular amplitude

0 . Experimentally determined values of the

T .
ratio T_B are as shown in the table below.
0

20° | 45° | 50° [ 70° [ 90°

1.02 | 1.04 | 1.05 | 1.10 | 1.18

I

o

It shows that the error in the time
period is about 2% at amplitude of 20°, 5%
at amplitude of 50°, 10% at amplitude of
70° and 18% at amplitude of 90°. Thus, the
recommended maximum angular amplitude
IS less than 20°. It also helps us in restricting
 the oscillations in a single vertical plane.

( A

Activity \

| = 434 second = 7 minutes, 14 second.

Example 5.11: In summer season, a
pendulum clock is regulated as a second’s
pendulum and it keeps correct time. During
winter, the length of the pendulum decreases
by 1%. How much will the clock gain or
lose in one day. (g = 9.8 m/s?)

Solution: In summer, with period T. = 2's,
the clock keeps correct time. Thus, in a day
of 86400 seconds, the clock’s pendulum

should perform @: 43200 oscillations,

to keep correct time.
L, = 1% less than summer = 0.99L_

T =27r\/Z
g
B N A T L PR oy
T \L 2
~T,=199s
With this period, the pendulum will now
86400 —_—
perform W:43417 oscillations per

day. Thus, it will gain 43417 - 43200 = 217
oscillations, per day.

Per oscillations the clock refers to 2 second.
Thus, the time gained, per day = 217 x 2

J

Conical pendulum

Simple pendulum

the bob is a horizontal circle

1 | Trajectory and the plane of the motion of

Trajectory and the plane of motion of the
bob is part of a vertical circle.

2 | K.E. and gravitational P.E. are constant.

K.E.and gravitational P.E. are interconverted
and their sum is conserved.

(governing force).

3 | Horizontal component of the force due to
tension is the necessary centripetal force

Tangential component of the weight is the
governing force for the energy conversions
during the motion.

4 | Period,

T LcosO

g

Period,

T=27r\/Z
g

horizontal and can never be horizontal.

5 | String always makes a fixed angle with the

With large amplitude, the string can be
horizontal at some instances.

like air resistance are neglected.

6 | During the discussion for both, we have ignored the stretching of the string and the energy
spent for it. However, the string is always stretched otherwise it will never have tension
(except at the extreme positions of the simple pendulum). Also, non-conservative forces

"~~



5.13: Angular S.H.M. and its Differential
Equation:

Figure 5.11 shows a metallic disc attached
centrally to a thin wire (preferably nylon or
metallic wire) hanging from a rigid support. If
the disc is slightly twisted about the axis along
the wire, and released, it performs rotational
motion partly in clockwise and anticlockwise
(or opposite) sense. Such oscillations are called
angular oscillations or torsional oscillations.

This motion is governed by the restoring
torque in the wire, which is always opposite
to the angular displacement. If its magnitude
happens to be proportional to the corresponding
angular displacement, we can call the motion

to be angular S.H.M.
PIIIII

A metallic
disc

Fig. 5.11: Torsional (angular) oscillations.

Thus, for the angular S.H.M. of a body,
the restoring torque acting upon it, for angular
displacement 6, is

Toc—0 Or 7=-cO --- (5.31)

The constant of proportionality c is the
restoring torque per unit angular displacement.
If 1 is the moment of inertia of the body, the
torque acting on the body is given by, 7=1«
Where o is the angular acceleration. Using
this in Eq. (5.31) we get, /a = —c0O

d’o

= +ch=0 - (5.32
o (5.32)

This is the differential equation for
angular S.H.M. From this equation, the
angular acceleration a can be written as,

d*o cO
a=2"_-_=

dr? I

Since ¢ and | are constants, the angular
acceleration o is directly proportional to
6 and its direction is opposite to that of the
angular displacement. Hence, this oscillatory
motion is called angular S.H.M.

Angular S.H.M. isdefined asthe oscillatory
motion of a body in which the torque for
angular acceleration is directly proportional
to the angular displacement and its direction is
opposite to that of angular displacement.

The time period T of angular S.H.M. is given

by, 127
10}
B 2

\/angular acceleration per unit

angular displacement

5.13.1 Magnet
Magnetic Field:
If a bar magnet is freely suspended in the
plane of a uniform magnetic field, it remains
in equilibrium with its axis parallel to the
direction of the field. If it is given a small
angular displacement 6 (about an axis passing
through its centre, perpendicular to itself and
to the field) and released, it performs angular
oscillations Fig. (5.12).

Vibrating in Uniform

—

? qlﬂB

N /

Fig. 5.12: Magnet vibrating in a uniform
magnetic field.

Let u be the magnetic dipole moment
and B the magnetic field. In the deflected
position, a restoring torque acts on the magnet,
that tends to bring it back to its equilibrium
position. [Here we used the symbol p for the
magnetic dipole moment as the symbol m is
used for mass].

The magnitude of this torque is 7= u Bsin6

If 6 issmall, sinf =0 ..T=uBo

For clockwise angular displacement 6,
the restoring torque is in the anticlockwise
direction.

e B



T =Iloo=—uBO
where | is the moment of inertia of the bar
magnet and « is its angular acceleration.

. _ (4B
o= ( ; je (5.33)

Since |, B and | are constants, Eqg. (5.33)
shows that angular acceleration is directly
proportional to the angular displacement and
directed opposite to the angular displacement.
Hence the magnet performs angular S.H.M.
The period of vibrations of the magnet is given
by

T 21

\/angular acceleration per unit

angular displacement
2r

%

~T=2r .
\| uB

(" \

Example 5.12: Abar magnet of mass 120 g,
in the form of a rectangular parallelepiped,
has dimensions | = 40 mm, b = 10 mm and
h = 80 mm. With the dimension h vertical,
the magnet performs angular oscillations
in the plane of a magnetic field with period
n S. If its magnetic moment is 3.4 A m?,
determine the influencing magnetic field.

Solution: T =2rx L LT =27 L
uB uB
.. B i

T
For a bar magnet, moment of inertia

2 2
Iy [“+b
12

1600+100
12

- (5.34)

~1=0.12 x107°

=1.7x10"° A m?
B 4x1.7x107
34

=2x10°Wbm2orT

Example 5.13: Two magnets with the same )
dimensions and mass, but of magnetic
moments 4, =100 Am?and #, =50 Am?
are jointly suspended in the earth’s magnetic
field so as to perform angular oscillations
in a horizontal plane. When their like poles
are joined together, the period of their
angular S.H.M. is 5 s. Find the period of
angular S.H.M. when their unlike poles are
joined together.

Solution: -
T=2r |—
\| uB

With like poles together, the effective
magnetic moment is (K, + 1)

1

(ﬂ1+ﬂ2)BH
With unlike poles together the effective
magnetic moment is (K~

T, =2r /

ﬁ T/;/-\
= ‘
RS
N | N

=/75=8665s

N—'|U1 3

\.

5.14 Damped Oscillations:

. y Rigid
support
<—— Spring
< Block
{ <5— Vane

Fig. 5.13: A damped oscillator.
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If the amplitude of oscillations of an
oscillator is reduced by the application of an
external force, the oscillator and its motion
are said to be damped. Periodic oscillations
of gradually decreasing amplitude are
called damped harmonic oscillations and
the oscillator is called a damped harmonic
oscillator.

For example, the motion of a simple
pendulum, dies eventually as air exerts a
viscous force on the pendulum and there may
be some friction at the support.

Figure 5.13 shows a block of mass m that
can oscillate vertically on a spring. From the
block, a rod extends to vane that is submerged
on a liquid. As the vane moves up and down,
the liquid exerts drag force on it, and thus on the
complete oscillating system. The mechanical
energy of the block-spring system decreases
with time, as energy is transferred to thermal
energy of the liquid and vane.

The damping force (F,) depends on the
nature of the surrounding medium and is
directly proportional to the speed v of the vane
and the block

S F,==bv
Where b is the damping constant and negative
sign indicates that ¥, opposes the velocity.

For spring constant k, the force on the
block from the spring is F, =—kx .

Assuming that the gravitational force
on the block is negligible compared to F, and
F_, the total force acting on the mass at any

time t is
F=F+F,

sma=F,+F,
S.ma=-bv—kx
sma+bv+kx=0
2
om0
dt dt
The solution of Eq. (5.35) describes the
motion of the block under the influence of a
damping force which is proportional to the
speed.

- (5.35)

The solution is found to be of the form
X = Aei%’” cos(co't +¢) --- (5.36)
(Ae_%’" ) is the amplitude of the damped

harmonic oscillations.

'S
Displacement (x)

+A
NS

. \ WWWWMM ®

-A

v
Fig. 5.14: Displacement against time graph.
As shown in the displacement against time
graph (Fig 5.14), the amplitude decreases with
time exponentially. The term cos(w't+¢)
shows that the motion is still an S.H.M.

|k (Y
The angular frequency, @' =,|— —| —
m \2m

27

k (b
»an)
The damping increases the period (slows down

the motion) and decreases the amplitude.

5.15 Free Oscillations, Forced Oscillations
and Resonance:

Free Oscillations: If an object is allowed
to oscillate or vibrate on its own, it does so
with its natural frequency (or with one of its
natural frequencies). For example, if the bob
of a simple pendulum of length | is displaced
and released, it will oscillate only with the

. A 2
Period of oscillation, T = E:

_ g .. .
frequency n—zﬂ ; which is called its

natural frequency and the oscillations are
free oscillations. However, by applying a
periodic force, the same pendulum can be
made to oscillate with different frequency. The
oscillations then will be forced oscillations
and the frequency is driver frequency or forced
frequency.

e T~



Consider the arrangement shown in
the Fig. 5.15. There are four pendula tied to
a string. Pendula A and C are of the same
length, pendulum B is shorter and pendulum
D is longer. Pendulum A is having a solid
rubber ball as its bob and will act as the driver
pendulum or source pendulum. Other three
pendula are having hollow rubber balls as their
bobs and will act as the driven pendula. As the
pendula A and C are of the same lengths, their
natural frequencies are the same. Pendulum
B has higher natural frequency as it is shorter
and pendulum D is of lower natural frequency
than that of Aand C.

B

AQ

C
(driver pendulum) D

Fig 5.15: Forced oscillations.
Pendulum A is now set into oscillations in

aplane perpendicular to the string. In the course
of time it will be observed that the other three
pendula also start oscillating in parallel planes.
This happens due to the transfer of vibrational
energy through the string. Oscillations of Aare
free oscillations and those of B, C and D are
forced oscillations of the same frequency as
that of A. The natural frequency of pendulum
C is the same as that of A, as it of the same
length as that of A.

It can also be seen that among the pendula
B, C and D, the pendulum C oscillates with
maximum amplitude and the other two with
smaller amplitudes. As the energy depends
upon the amplitude, it is clear that Pendulum C
has absorbed maximum energy from the source
pendulum A, while the other two absorbed
less. It shows that the object C having the
same natural frequency as that of the source

absorbs maximum energy from the source. In
such case, it is said to be in resonance with
the source (pendulum A). For unequal natural
frequencies on either side (higher or lower), the
energy absorbed (hence, the amplitude) is less.
If the activity is repeated for a set of pendula
of different lengths and squares of their
amplitudes are plotted against their natural
frequencies, the plot will be similar to that
shown in the Fig. 5.16. The peak occurs when
the forced frequency matches with the natural

frequency, i.e., at the resonant frequency.
N

/. = resonant
frequency

forced ~
frequency f

=L

Fig 5.16: Resonant frequency.

In Chapter superposition of waves, you
will see that most of the traditional musical
instruments use the principle of resonance. In
the topic AC circuits, the resonance in the L.C.
circuits is discussed.

C) Internet my friend%

1. https://hyperphysics.phy-astr.gsu.edu/
hbase/shm.html

2. https://hyperphysics.phy-astr.gsu.edu/
hbase/pend.html

3. https://en.wikipedia.org/wiki/

simpleharmonicmotion
https://opentextbc.ca/physicstextbook
5. https://physics.info

s
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1. Choose the correct option.

i)

i)

A particle performs linear S.H.M.
starting from the mean position. Its
amplitude is A and time period is T. At
the instance when its speed is half the
maximum speed, its displacement x is

B 2,
) A ® 5

A 1
© #, ©) A

Abody of mass 1 kg is performing linear
S.H.M. Its displacement x (cm) at t
(second) is given by

X = 6 sin (100t + w/4). Maximum Kinetic
energy of the body is

(A) 361 (B)91J

(©) 271 (D) 187

The length of second's pendulum on the
surface of earth is nearly 1 m. Its length
on the surface of moon should be [Given:
acceleration due to gravity (g) on moon
is 1/6 ™ of that on the earth’s surface]

(A)1/6m (B)6m
©)136m (D) % m

iv) Two identical springs of constant k are

connected, first in series and then in
parallel. A metal block of mass m is
suspended from their combination. The
ratio of their frequencies of vertical
oscillations will be in a ratio

(A)1:4 B)L1:2 (C)21 (D)41
The graph shows variation of
displacement of a particle performing
S.H.M. with time t. Which of the
following statements is correct from the
graph?

(A) The acceleration is maximum at
time T.

(B) The force is maximum at time 3T/4.
(C) The velocity is zero at time T/2.

(D) The kinetic energy is equal to total
energy at time T/4.

N
j 3774 /\
T/4 T/W T

-V

2. Answer in brief.

i)
i)

ii)

iv)

Define linear simple harmonic motion.
Using differential equation of linear
S.H.M, obtain the expression for (a)
velocity in S.H.M., (b) acceleration in
S.H.M.

Obtain the expression for the period of a
simple pendulum performing S.H.M.
State the laws of simple pendulum.
Prove that under certain conditions a
magnet vibrating in uniform magnetic
field performs angular S.H.M.

Obtain the expression for the period of a
magnet vibrating in a uniform magnetic
field and performing S.H.M.

Show that a linear S.H.M. is the
projection of a U.C.M. along any of its
diameter.

Draw graphs of displacement, velocity
and acceleration against phase angle,
for a particle performing linear S.H.M.
from (a) the mean position (b) the
positive extreme position. Deduce your
conclusions from the graph.

Deduce the expressions for the kinetic
energy and potential energy of a particle
executing S.H.M. Hence obtain the
expression for total energy of a particle
performing S.H.M and show that the
total energy is conserved. State the
factors on which total energy depends.
Deduce the expression for period of
simple pendulum. Hence state the factors
on which its period depends.

At what distance from the mean position
is the speed of a particle performing
S.H.M. half its maximum speed. Given
path length of S.H.M. =10 cm.

[Ans: 4.33 cm]
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10.

11.

12.

13.

14.

15.

16.

17.

In Sl units, the differential equation
2

of an S.H.M. is %:—3&. Find its
t

frequency and period.

[Ans: 0.955 Hz, 1.05 s]
A needle of a sewing machine moves
along a path of amplitude 4 cm with
frequency 5 Hz. Find its acceleration

(%j s after it has crossed the mean

position. [Ans: 34.2 m/s?]
Potential energy of a particle performing
linear S.H.M is 0.1 % x? joule. If mass of
the particle is 20 g, find the frequency of
S.H.M. [Ans: 1.581 Hz]
The total energy of a body of mass 2 kg
performing S.H.M. is 40 J. Find its speed
while crossing the centre of the path.
[Ans: 6.324 cm/s]
A simple pendulum performs S.H.M of
period 4 seconds. How much time after
crossing the mean position, will the
displacement of the bob be one third of
its amplitude. [Ans: 0.2163 s]
A simple pendulum of length 100 cm
performs S.H.M. Find the restoring force
acting on its bob of mass 50 g when the
displacement from the mean position is
3cm. [Ans: 1.48 x 102N]
Find the change in length of a second’s
pendulum, if the acceleration due to
gravity at the place changes from 9.75
m/s? to 9.8 m/s2.
[Ans: Decreases by 0.0051 m]
At what distance from the mean position
is the Kkinetic energy of a particle
performing S.H.M. of amplitude 8 cm,
three times its potential energy?
[Ans: 4 cm]
A particle performing linear S.H.M.
of period 2n seconds about the mean
position O is observed to have a speed
of bv3m/s, when at a distance b
(metre) from O. If the particle is moving
away from O at that instant, find the
time required by the particle, to travel a
further distance b. [Ans: 7/3 s]

18.

19.

20.

21.

22.

23.

The period of oscillation of a body of
mass m, suspended from a light spring
is T. When a body of mass m, is tied to
the first body and the system is made to
oscillate, the period is 2T. Compare the
masses m, and m, [Ans: 1/3]
The displacement of an oscillating
particle is given by x = asinwt + beoswt
where a, b and  are constants. Prove
that the particle performs a linear S.H.M.
with amplitude 4 =+/a?+ 5>
Two parallel S.H.M.s represented by
X, = 5sin (4n t + n/3) cm and x, = 3sin
(4nt + mw/4) cm are superposed on a
particle. Determine the amplitude and
epoch of the resultant S.H.M.
[Ans: 7.936 cm, 54° 23']
A 20 cm wide thin circular disc of mass
200 g is suspended to a rigid support
from a thin metallic string. By holding
the rim of the disc, the string is twisted
through 60° and released. It now performs
angular oscillations of period 1 second.
Calculate the maximum restoring torque
generated in the string under undamped
conditions. (3 ~ 31)
[Ans: 0.04133 N m]
Find the number of oscillations
performed per minute by a magnet is
vibrating in the plane of a uniform field
of 1.6 x 10° Wb/m?. The magnet has
moment of inertia 3 x 10° kg/m? and
magnetic moment 3 A m2,
[Ans:38.19 osc/min.]
A wooden block of mass m is kept
on a piston that can perform vertical
vibrations of adjustable frequency and
amplitude. During vibrations, we don’t
want the block to leave the contact
with the piston. How much maximum
frequency is possible if the amplitude of
vibrations is restricted to 25 cm? In this
case, how much is the energy per unit
mass of the block? (g ~ > ~ 10 m s ?)
[Ans:n_ =1/s, E/m=1.25J/kg]

kK
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6. Superposition of Waves

C) Can you recall? \

1. What is wave motion?
2. What is a wave pulse?

3. What are common properties of
waves?

4. What happens
propagates?

5. What are mechanical waves?

6. What are electromagnetic waves?

7. How are mechanical waves different
from electromagnetic waves?

8. What are sound waves?

6.1 Introduction:

You may be familiar with different waves
like water waves, sound waves, light waves,
mechanical waves, electromagnetic waves
etc. A mechanical wave is a disturbance
produced in an elastic medium due to periodic
vibrations of particles of the medium about
their respective mean positions. In this
process, energy and momentum are transferred
from one particle to another. Thus, a wave
carries or transfers energy from one point to
another., but there is no transfer of matter or
particles of the medium in which the wave
is travelling. Another type of waves, known
as electromagnetic waves, do not require
material medium for their propagation; these
are non-mechanical waves. We have studied
sound waves (which are mechanical waves),
their properties and various phenomena like
echo, reverberation, Doppler effect related to
these waves in earlier classes. In this Chapter,
we will study mechanical waves, reflection
of these waves, principle of superposition of
waves, various phenomena like formation of
stationary waves, beats, and their applications.
6.2 Progressive Wave:

Have you seen ripples created on the
surface of water when a stone is dropped in it?

when a wave

The water is displaced locally where the stone

actually falls in water. The disturbance slowly

spreads and distant particles get disturbed from
their position of rest. The wave disturbs the
particles for a short duration during its path.

These particles oscillate about their position

of rest for a short time. They are not bodily

moved from their respective positions. This

disturbance caused by the stone is actually a

wave pulse. It is a disturbance caused locally

for a short duration.

A wave, in which the disturbance
produced in the medium travels in a given
direction continuously, without any damping
and obstruction, from one particle to another,
Is a progressive wave or a travelling wave
e.g., the sound wave, which is a pressure wave
consisting of compressions and rarefactions
travelling along the direction of propagation
of the wave.

6.2.1 Properties of progressive waves:

1) Each particle in a medium executes the
same type of vibration. Particles vibrate
about their mean positions performing
simple harmonic motion.

2) All vibrating particles of the medium
have the same amplitude, period and
frequency.

3) The phase, (i.e., state of vibration of a
particle), changes from one particle to
another.

4) No particle remains permanently at rest.
Each particle comes to rest momentarily
while at the extreme positions of vibration.

5) The particles attain maximum velocity

when they pass through their mean
positions.

) During the propagation of wave, energy
is transferred along the wave. There is no
transfer of matter.

7) The wave propagates through the medium

(<)
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with a certain velocity. This velocity

depends upon properties of the medium.

8) Progressive waves are of two types -
transverse waves and longitudinal waves.

9) In a transverse wave, Vvibrations of
particles are perpenduclar to the direction
of propogation of wave and produce crests
and troughs in their medium of travel.
In longitudinal wave, vibrations of
particles produce compressions and
rarefactions along the direction of
propagation of the wave.

10) Both, the transverse as well as the
longitudinal, mechanical waves can
propagate through solids but only
longitudinal waves can propagate through
fluids.

You might recall that when a mechanical
wave passes through an elastic medium, the
displacement of any particle of the medium
at a space point x at time t is given by the
expression

y(xt)=f(x=vi) - (6.1)
where v is the speed at which the disturbance
travels through the medium to the right

(increasing x). The factor (x—V¢) appears

because the disturbance produced at the point x

=0 at time t reaches the point x = X’ on the right

at time (t + x’/v) or we say that the disturbance

of the particle at time t at position x = X’

actually originated on the left side at time (t

- X'Iv). Thus Eq. (6.1) represents a progressive

wave travelling in the positive x-direction with

a constant speed v. The function f depends on

the motion of the source of disturbance. If the

source of disturbance is performing simple

harmonic motion, the wave is represented as a

sine or cosine function of (x - vt) multiplied by

a term which will make (x - vt) dimensionless.

Generally we represent such a wave by the

following equation

y(x,1)=Asin(kx - ot) - (6.2)
where A is the amplitude of the wave, k = 2rt/A
is the wave number, A and o are the wavelength
and the angular frequency of the wave and

v =w /kisthe speed. The Sl units of k, A and @

are rad mt, m and rad s! respectively. If
T is the time period of oscillation, then
n=1/T = ® /(2x) is the frequency of oscillation
measured in Hz (s?). If the wave is travelling
to the left i.e., along the negative x-direction,
then the equation for the disturbance is

y(x,t)=Asin(kx+or) — (6.3)

) Can you tell? ~

What is the minimum distance between any

two particles of a medium which always

have the same speed if a sine wave travels
\through the medium?

J

6.3 Reflection of Waves:

When a progressive wave, travelling
through a medium, reaches an interface
separating two media, a certain part of the
wave energy comes back in the same medium.
The wave changes its direction of travel. This is
called reflection of a wave from the interface.

Reflection is the phenomenon in which
the sound wave traveling from one medium
to another comes back in the original medium
with slightly different intensity and energy. To
understand the reflection of waves, we will
consider three examples below.

6.3.1 Reflection of a Transverse Wave:

—

A VN

A B

—
Fig. 6.1: Reflection of a wave pulse sent as a

crest from a rarer medium to a denser medium.

Example 1

e Take a long light string AB. Attach one
end of the string to a rigid support at B.
(Here, for the wave pulse traveling on the
string, the string is the rarer medium and
the rigid support acts as a denser medium.)

* By giving a jerk to the free end A of the
string, a crest is generated in the string.

* Observe what happens when this crest
moves towards B?

e Observe what happens when the crest
reaches B?
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* Perform the same activity repeatedly and
observe carefully. Try to find the reasons
of movements in above observations.

Example 2

A /\_ﬁ > B Ring
A /.

—

Fig.6.2: Reflection of a wave pulse sent as a
crest from a denser medium to a rarer medium.

BIT Ring

» Take a long light string AB. Attach the
end B of the string to a ring which can
slide easily on a vertical metal rod without
friction. (Here string is the denser medium
while end B attached to the sliding ring is
at the interface of a rarer medium as it can
move freely.)

e Give a jerk to free end A of the string.

* Observe what happens when crest reaches
the point B attached to the ring.

 Try to find the reason of the observed
movement.

Example 3
s
P /" "\ ) Q
o}
Q
P\ '
0]
(@)
P , . Q
3 :
— ——

Fig. 6.3: Reflection of a crest from (a) denser
medium (in this case a heavy string) and (b)
rarer medium (in this case a light string).

» Take a heavy string P and a light string
Q and join them. Suppose they are joined
at point O. (Heavy string acts as a denser
medium and light string is the rarer
medium.)

* Produce awave pulse as a crest on the heavy
string P moving towards the junction O.

e Observe the part of wave pulse reflected
back on the heavy string.

e Produce a wave pulse as a crest on the
light string Q moving towards the junction
point O.

* Observe the part of wave pulse reflected
on the light string.

* What difference do you observe when the
wave pulse gets reflected on the light string
and when the wave pulse gets reflected on
the heavy string?

e Try to find
observations.

In example 1, when crest moves along the
string towards B, it pulls the particles of string
in upward direction. Similarly when the crest
reaches B at rigid support, it tries to pull the
point B upwards. But being a rigid support,
B remains at rest and an equal and opposite
reaction is produced on the string according
to Newton’s third law of motion. The string is
pulled downwards. Thus crest gets reflected as
atrough (Fig. 6.1) or atrough gets reflected as a
crest. Hence from example 1, we can conclude
that when transverse wave is reflected from a
rigid support, i.e., from a denser medium, a
crest is reflected as a trough and a trough is
reflected as a crest. You have learnt in X" and

XI™ Std. that there is a phase difference of n
radian between the particles at a crest and at
a trough. Therefore we conclude that there is
a phase change of = radian on reflection from
the fixed end, i.e., from a denser medium.

In example 2, we observe that when the
crest reaches the point B, it pulls the ring
upwards and causes the ring to move upward.
The wave is seen to get reflected back as a
crest and no phase change occurs on reflection
from a rarer medium (Fig. 6.2).

In example 3, we find that a crest
travelling from the heavy string gets reflected
as a crest from the lighter string, i.e., reflection
at the surface when a wave is travelling from
a denser medium to a rarer medium causes a
crest to be reflected as a crest (Fig. 6.3 (a)).

reasons behind your
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But in example 3 (Fig. 6.3 (b)), when a crest
travels from the lighter string to the heavy
string, the crest is reflected as a trough and
vice versa.
6.3.2 Reflection of a Longitudinal Wave:

Consider a longitudinal wave travelling
from a rarer medium to a denser medium. In
a longitudinal wave compression is a high
pressure region while rarefaction is a low
pressure region. When compression reaches
the denser medium, it tries to push the particles
of that medium. But the energy of particles in
the rarer medium is not sufficient to compress
the particles of denser medium. According to
Newton’s third law of motion, an equal and
opposite reaction comes into play. As a result,
the particles of rarer medium get compressed.
Thus, when the longitudinal wave travels
from a rarer medium to a denser medium, a
compression is reflected as a compression and
ararefaction is reflected as a rarefaction. There
is no change of phase during this reflection
(Fig. 6.4).

R cC —»

e
Incident
longitudinal
wave Rigid
wall

4—
Reflected
wave

Fig. 6.4: Reflection of a longitudinal wave from
a denser medium.

When longitudinal wave travels from a
denser medium to a rarer medium (Fig. 6.5),
a compression is reflected as a rarefaction.
Here reversal of phase takes place, i.e., phase
changes by = radians.

When compression reaches a rarer
medium from denser medium, it pushes the
particles of rare medium. Due to this, particles
of the rarer medium get compressed and move
forward and a rarefaction is left behind. Thus
a compression gets reflected as a rarefaction.
Similarly a rarefaction gets reflected as a
compression (Fig. 6.5).

C R

C R C R

Incident Wave ———p
R C

R C R C
Rarer
Medium

Reflected Wave ¢——
Fig. 6.5: Reflection of a longitudinal wave from
a rarer medium.
6.4 Superposition of Waves:

Suppose you wish to listen to your
favourite music. Is it always possible
particularly when there are many other sounds
from the surroundings disturbing you. How can
the background sounds be blocked? Of course,
the mobile lover generation uses headphones
and enjoys listening to its favorite music.
But you cannot avoid the background sound
completely. Why?

We know that sound waves are
longitudinal waves propagating through an
elastic medium. When two waves travelling
through a medium cross each other, each
wave travels in such a way as if there is no
other wave. Each wave sets the particles of
the medium into simple harmonic motion.
Thus each particle of the medium is set into
two simple harmonic motions due to the two
waves. The total displacement of the particles,
at any instant of time during travelling of
these waves, is the vector sum of the two
displacements. This happens according to the
principle of superposition of waves, which
states that, when two or more waves, travelling
through a medium, pass through a common
point, each wave produces its own displacement
at that point, independent of the presence of
the other wave. The resultant displacement
at that point is equal to the vector sum of the
displacements due to the individual wave at that
point. As displacement is a vector, we must add
the individual displacements by considering
their directions. There is no change in the
shape and nature of individual waves due to
superposition of waves. This principle applies
to all types of waves like sound waves, light

Rarer
Medium
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waves, waves on a string etc. and we say that
interference of waves has taken place.

" You might have seen singers using a special\
type of headphones during recording of
songs. Those are active noise cancellation
headphones, which is the best possible
solution to avoid background sound.
Active noise cancellation headphones
consist of small microphones one on each
earpiece. They detect the ambient noise
that arrives at the ears. A special electronic
circuit is built inside the earpiece to create
sound waveforms exactly opposite to the
arriving noise. This is called antisound.
The antisound is added in the earphones so
as to cancel the noise from outside. This is
possible due to superposition of waves, as
the displacements due to these two waves
cancel each other. The phenomena of
interference, beats, formation of stationary
waves etc. are based on the principle of
superposition of waves.

\_
Let us consider superposition of two wave
pulses in two different ways.

6.4.1 Superposition of Two Wave Pulses of
Equal Amplitude and Same Phase Moving
towards Each Other :

J

t=0s (a)
t=1s (b)
t=2s ©
t=3s % (d)
(=45 M ©
t=5s M %)

t=6s —/\—/\ 9

Fig. 6.6: Superposition of two wave pulses
of equal amplitude and same phase moving
towards each other.

The propagation of approaching wave
pulses, their successive positions after
every second, their superposition and their

propagation after superposition are shown
in Figs. 6.6 (a) to 6.6 (f). Suppose two
waves cross each other between t = 2 s and
t = 4 s, as shown in Figs. 6.6 (c), (d) and
(e). Here the two wave pulses superpose,
the resultant displacement is equal to the
sum of the displacements (full line) due to
individual wave pulses (dashed lines). This
is constructive interference. The displacement
due to wave pulses after crossing att=5 s and
t =6 s are shown in Figs. 6.6 (f) and (g). After
crossing each other, both the wave pulses
continue to maintain their individual shapes.
6.4.2 Superposition of Two Wave Pulses
of Equal Amplitude and Opposite Phases
Moving towards Each Other :

—
t=0s N\ ~_  ©@
—
—
t=1s J\ﬁ (b)
_t-\
t=2s ::: (c)
.
t=3s+(d)
—
t=4s N (e)
4_\/

Fig. 6.7: Superposition of two wave pulses of
equal amplitude and opposite phases moving
towards each other.

The propagation of approaching wave
pulses, their successive positions after every
second, their superposition and propagation
after superposition are shown in Fig. 6.7 (a) to
Fig. 6.7 (e).

These wave pulses superimpose at
t = 2 s and the resultant displacement (full
line) is zero, due to individual displacements
(dashed lines) differing in phase exactly
by 180°. This is destructive interference.
Displacement due to one wave pulse is
cancelled by the displacement due to the
other wave pulse when they cross each other
(Fig. 6.7 (c)). After crossing each other, both
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the wave pulses continue and maintain their
individual shapes.
6.4.3 Amplitude of the Resultant Wave
Produced due to Superposition of Two Waves:
Consider two waves having the same frequency
but different amplitudes A, and A,. Let these
waves differ in phase by ¢ . The displacement
of each wave at x = 0 is given as

y, =4, sinwt

v, =4,sin(wr+¢)

According to the principle of superposition
of waves, the resultant displacement at x =0 is
y=y+Y,
or, y = A sinwt + 4, sin (ot +¢)
VY = A, sinot + 4, sinwt cosg + A, cos ot sing
y =(4, + A,cosp)sinot + 4,sing coswt
If we write

A + A, cosp =AcosO --- (6.4)
and A sing = Asin0 --- (6.5)
we get
y = Acos0 sinwt + Asinf coswt
Loy = Asin(a)t + 9) --- (6.6)

This is the equation of the resultant
wave. It has the same frequency as that of the
interfering waves. The resultant amplitude A
is given by squaring and adding Egs. (6.4) and
(6.5).

A’cos’0 + A’sin’0 = (Al + Azcosq))2 + A sin’p
A’ =A’+2AAcosp+A’cos’e+ Asin’p
A:\/Al2 +2AAcosp+A° --- (6.7)
Special cases:

1. When ¢ =0, i.e., the waves are in phase,
the resultant amplitude is

A:\/A]2+2A1Azcos0+A22 =J(A+A)

= A+A
The resultant amplitude is maximum when
o =0.

If the amplitudes of the waves are equal i.e.,
A = A, = A(say), then the resultant amplitude
is 2A.

2. When ¢ = m, i.e., the waves are out of

phase, the resultant amplitude is

A=A +2 4, Ad,cosm+ 4,2 = (4, — 4, )

= |A1_ Agl
The resultant amplitude is minimum when
@ =T

If the amplitudes of the waves are equal i.e.,
A, = A, = A(say), then the resultant amplitude
is zero.

Thus, the maximum amplitude is the
sum of the two amplitudes when the phase
difference between the two waves is zero and
the minimum amplitude is the difference of
the two amplitudes when the phase difference
between the two waves is .

The intensities of the waves are
proportional to the squares of their amplitudes.
Hence, when ¢ =0

Imax oc (Amax )2 = (Al +A2 )2 T (68)
and when @ =x
Imin R (14min)2 = (Al _AZ )2 T (69)

Therefore intensity is maximum when the
two waves interfere in phase while intensity is
minimum when the two waves interfere out of
phase.

You will learn more about superposition
of waves in Chapter 7 on Wave Optics.

Example 6.1: The displacements of two

sinusoidal waves propagating through a

string are given by the following equations
y, = 4sin(20x —30¢)

v, =4 sin(25x —40¢)
where x and y are in centimeter and t is in
second.
a) Calculate the phase difference between
these two waves at the points x =5 cm and
t=2s.
b) When these two waves interfere, what
are the maximum and minimum values of
the intensity?
Solution: Given

y, = 4sin(20x —30¢)
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and  y, =4sin(25x—40¢)

a) To find phase difference when x =5 cm
andt=2s:
y, =4sin(20x5-30x2)

=45in(100—60) = 4sin 40
Y, :4sin(25><5—40><2)

=4 sin(125 —80) =4sin45

Phase difference is 5 radian because ¢

= |45 - 40| = 5 radian.
b) To find the maximum and minimum
values of the intensity :
Amplitudes of the two waves are A = 4 cm
and A,=4cm,

fL=(4+4,) =(4+4) =64
when the phase difference is zero
and 7 —(4,-4,) =(4-4) =0

when the phase difference is =.

Example 6.2: A progressive wave travels
on a stretched string. A particle on this
string takes 4.0 ms to move from its mean
position to one of its extreme positions. The
distance between two consecutive points on
the string which are at their mean positions
(at a certain time instant) is 2.0 cm. Find
the frequency, wavelength and speed of the
wave.

Solution :

A Displacement

\/ > Time
Position

Displacement
(b) I\A -
A

A particles takes 4.0 x 107 s to travel from
its mean position to extreme position. This
is a quarter of the complete oscillation as
shown in Fig. (a). Hence, the particle will
take 4 x 4.0 x 103 s =16 x 10 s to complete
one oscillation.

(@)

PE—

4 ms

J

- frequency n = 1/T =(1/16) x 103s*?
=62.5Hz

As shown in Fig. (b), points A, B, and C
correspond to mean positions, but the string
is moving in one direction at point A and
in the opposite direction at point B. Thus,
out of the two consecutive particles at
their mean positions, one will be moving
upwards while the other will be moving
downwards. The distance between them
is 2.0 cm. Therefore distance between two
consecutive particles moving in the same
direction will be 2 x 2 cm =4 cm. Thus the
wavelength A =4 cm =0.04 m

Speed of wave v=nx A =62.5x 0.04

=25m/s.

J/

6.5 Stationary Waves:

We have seen the superposition of two
wave pulses, havingsame amplitudesandeither
same phase or opposite phases, and changes
in the resultant amplitude pictorially in section
6.4. We have also derived the mathematical
expression for the resultant displacement when
two waves of same frequency superimpose as
given by Egs. (6.4) to (6.6). Now we are going
to study an example of superposition of waves
having the same amplitude and the same

frequency travelling in opposite directions.
6.5.1 Formation of Stationary Waves:

Imagine a string stretched between two
fixed points. If the string is pulled at the
middle and released, we get what is know as a
stationary wave. Releasing of string produces
two progressive waves travelling in opposite
directions. These waves are reflected at the
fixed ends. The waves produced in the string
initially and their reflected waves combine
to produce stationary waves as shown in

Fig. 6.8 (a).

Antinodes

-

Fig. 6.8 (a): Formation of stationary
waves on a string. The two sides arrows

indicate the motion of the particles of the string.
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6.5.2 Equation of Stationary Wave on a
Stretched String:

Consider two simple harmonic progressive
waves of equal amplitudes (a) and wavelength
(1) propagating on a long uniform string in
opposite directions (remember 2n/A = k and
21N = ®).

The equation of wave travelling along the
X-axis in the positive direction is

--- (6.10)

The equation of wave travelling along the
x-axis in the negative direction is

Y, =asin {27‘[(1’12‘—%]}

y, =asin 2ﬂ(m+% - (6.11)

When these waves interfere, the resultant
displacement of particles of string is given by
the principle of superposition of waves as

y=y.+Y,
y=asin{2r nt—> |\ +asin 27r[nt+£j
A A
By using,

sinC+sinD:2sin(C;chos(ﬂJ ,we

2
get
y=2a sin(Zﬂnt)coszz—x

y=2a coszz—xsin(Znnt) or, --- (6.12)

USing 24 cos 2% = 4 in Eq. (6.12), we get
A

y = Asin (2rnt)

As ® =2rn, we get, y = 4sinwt -

This is the equation of a stationary wave
which gives resultant displacement due to two
simple harmonic progressive waves. It may be
noted that the terms in position x and time t
appear separately and not as a combination
2w (nt + x/1).

Hence, the wave is not a progressive
wave. X is present only in the expression for
the amplitude. The amplitude o&t[r;ce resultant
wave is given as 4=2acos——. It is a
periodic function of x i.e., the 'éitmplitude IS
varying periodically in space. The amplitudes
are different for different particles but each

e T~

point on the string oscillates with the same
frequency o (same as that of the individual
progressive wave). All the particles of the
string pass through their mean positions
simultaneously twice during each vibration.
The string as a whole is vibrating with
frequency o with different amplitudes at
different points. The wave is not moving either
to the left or to the right. We therefore call such
awave a stationary wave or a standing wave.
Particles move so fast that the visual effect is
formation of loops. It is therefore customary
to represent stationary waves as loops. In case
of a string tied at both the ends, loops are seen
when a stationary wave is formed because
each progressive wave on a string is a traverse
wave. When two identical waves travelling
along the same path in opposite directions
interfere with each other, resultant wave is
called stationary wave.
Condition for node:

Nodes are the points of minimum
displacement. This is possible if the amplitude

IS minimum (zero), i.e.,

2ac0s2ﬂ—x:0’
A

or, cosﬂ =0,
A

or, 27rX:71 RY/4 57r,

e, :(Zp—l)% wherep=1,2,3, .........

'I/'lhe distance between two successive nodes is

2
Condition for antinode:

Antinodes are the points of maximum
displacement,

i.e., A=%2a

S 2a cos% =+2a

27X
or, cos—— =
A

I+

1

27T—X=O,7r,27r,37t...
A



A 31
or, Xx=0, —, A, —,.....
2 2
A
e, x = 2P wherep= 0,1, 2,3....
The distance between two successive antinodes

is 7. Nodes and antinodes are formed

2
alternately. Therefore, the distance between a
node and an adjacent antinode is % .

When sin ot = 1, at that instant of time,
all the particles for which cos kx is positive
have their maximum displacement in positive
direction. At the same instant, all the particles
for which cos kx is negative have their
maximum displacement in negative direction.
When sin ot = 0, all the particles cross their
mean positions, some of them moving in the
positive direction and some in the negative
direction.

Longitudinal waves e.g. sound waves
travelling in a tube /pipe of finite length
are relected at the ends in the same way as
transverse waves along a string are reflected
at the ends. Interference between these
waves travelling in opposite directions gives
rise to standing waves as shown in Fig. 6.8
(b). We represent longitudinal stationary
wave by a loop but the actual motion of the
particles is along the length of the loop and not
perpendiculat to it.

A IA
Fig. 6.8 (b): Figure on the

I left shows standing waves
3 in a conventional way while
-N| figure on the right shows
3 the actual oscillations of
I material particles for a
longitudinal stationary
IA wave. Points A and N

denote antinodes and nodes
I respectively.
!

N N

6.5.3 Properties of Stationary Waves:

1. Stationary waves are produced due to
superposition of two identical waves (either
transverse or longitudinal waves) traveling

through a medium along the same path in
opposite directions.

If two identical transverse progressive
waves superimpose or interfere, the
resultant wave is a transverse stationary
wave as shown in Fig. 6.8 (a).

When a transverse stationary wave is
produced on a string, some points on the
string are motionless. The points which do
not move are called nodes.

There are some points on the string which
oscillate with greatest amplitude (say A).
They are called antinodes.

Points between the nodes and antinodes
vibrate with values of amplitudes between
0 and A.

If two identical longitudinal progressive
waves superimpose or interfere, the
resultant wave is a longitudinal stationary
wave. Figure 6.8 (b) shows a stationary
sound wave produced in a pipe closed at
one end.

The points, at which the amplitude of the
particles of the medium is minimum (zero),
are called nodes.

The points, at which the amplitude of the
particles of the medium is maximum (say
A), are called antinodes.

Points between the nodes and antinodes
vibrate with values of amplitudes between
Oand A

The distance between two consecutive

nodes is & and the distance between two

consecutive antinodes is &

. 2
Nodes and antinodes are produced
alternately. The distance between a node

and an adjacent antinode is A,

The amplitude of vibrgtion varies
periodically in space. All points vibrate
with the same frequency.

Though all the particles (except those
at the nodes) possess energy, there is
no propagation of energy. The wave is
localized and its velocity is zero. Therefore,
we call it a stationary wave.
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8. All the particles between adjacent nodes
(i.e., in one loop) vibrate in phase. There
IS no progressive change of phase from
one particle to another particle. All the
particles in the same loop are in the same
phase of oscillation, which reverses for the
adjacent loop.

Musical instruments such as violin, tanpura,

are based on the principle of formation of

stationary waves or standing waves.

( Example 6.3: Find the distance between |
two successive nodes in a stationary wave
on a string vibrating with frequency 64
Hz. The velocity of progressive wave that
resulted in the stationary wave is 48 m s*.
Solution: Given:
Speed of wave =v =48 m s*
Frequency n = 64 Hz
We have v =ni

=Y -B _075m
] n 64 )
We know that distance between successive
nodes
= i = —0'75 =0.375
ST Tuehm
\ J

6.5.4 Comparison of Progressive Waves and

Stationary Waves:

1. In a progressive wave, the disturbance
travels form one region to the other with
definite wvelocity. In stationary waves,
disturbance remains in the region where it
is produced, velocity of the wave is zero.

2. In progressive waves, amplitudes of all
particles are same but in stationary waves,
amplitudes of particles are different.

3. Inastationary wave, all the particles cross
their mean positions simultaneously but in
a progressive wave, this does not happen.

4. In progressive waves, all the particles are
moving while in stationary waves particles
at the position of nodes are always at rest.

5. Energy is transmitted from one region
to another in progressive waves but in
stationary waves there is no transfer of
energy.

6. All particles between two consecutive
nodes are moving in the same direction
and are in phase while those in adjacent
loops are moving in opposite directions
and differ in phase by 180° in stationary
waves but in a progressive wave, phases of
adjacent particles are different.

/—C) Do you know? ~

* What happens if a simple pendulum is
pulled aside and released?

» What happens when a guitar string is
plucked?

» Have you noticed vibrations in a drill
machine or in a washing machine? How
do they differ from vibrations in the
above two cases?

e A vibrating tuning fork of certain
frequency is held in contact with table
top and vibrations are noticed and then
another vibrating tuning fork of different
frequency is held on table top. Are the
vibrations produced in the table top the
same for both the tuning forks? Why?

_ J
6.6 Free and Forced Vibrations:

The frequency at which an object tends
to vibrate when hit, plucked or somehow
disturbed is known as its natural frequency.
In these vibrations, object is not under the
influence of any outside force.

When a simple pendulum is pulled aside
and released, it performs free vibrations with
its natural frequency. Similarly when a string
of guitar is plucked at some point it performs
free vibrations with its natural frequency.

In free vibration, the body at first is
given an initial displacement and the force is
then withdrawn. The body starts vibrating and
continues the motion on its own. No external
force acts on the body further to keep it in
motion.

Free vibration of a system means that the
system vibrates at its natural frequency. In
case of free vibrations, a body continuously
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loses energy due to frictional resistance of
surrounding medium. Therefore, the amplitude
of vibrations goes on decreasing, the vibrations
of the body eventually stop and the body comes
to rest.

The vibrations in a drill machine and in a
washing machine are forced vibrations. Also
the vibrations produced in the table top due to
tuning forks of two different frequencies are
different as they are forced vibrations due to
two tuning forks of different frequencies.

In forced vibrations, an external periodic
force is applied on a body whose natural period
is different from the period of the force. The
body is made to vibrate with a frequency equal
to that of the externally impressed force. The
amplitude of forced vibrations depends upon
the difference between the frequency of external
periodic force and the natural frequency of the
body. If this difference is small, the amplitude
of forced vibrations is large and vice versa. If
the frequencies exactly match, it is termed as
resonance and the amplitude of vibration is
maximum.

An object vibrating with its natural
frequency can cause another nearby object to
vibrate. The second object absorbs the energy
transmitted by the first object and starts
vibrating if the natural frequencies of the two
objects match. You have seen the example of
two simple pendula supported from a string in
the previous chapter. The second object is said
to undergo forced vibrations. Strings or air
columns can also undergo forced oscillations
if the frequency of the external source of sound
is close to the natural frequency of the system.
Resonance is said to occur and we hear a
louder sound.

6.7 Harmonics and Overtones:

When a string or an air column is set
into vibrations by some means, the waves are
reflected from the ends and stationary waves
can be formed. An important condition to form
stationary waves depends on the boundary

conditions that constrain the possible
wavelengths or frequencies of vibration
of the system. These are called the natural
frequencies of normal modes of oscillations.
The minimum of these frequencies is termed the
fundamental frequency or the first harmonic.
The corresponding mode of oscillations is
called the fundmental mode or fundamental
tone. The term overtone is used to represent
higher frequencies. The first frequency higher
than the fundamental frequency is called
the first overtone, the next frequency higher
Is the second overtone and so on. The term
'harmonic' is used when the frequency of a
particular overtone is an intergral multiple
of the fundamental frequency. In strings and
air columns, the frequencies of overtoners
are integral multiples of the fundamental
frequencies, hence they are termed as
harmonics. But all harmonics may not be
present in a given sound. The overtones are
only those multiples of fundamental frequency
which are actually present in a given sound.
The harmonics may or may not be present in
the sound so produced.

To understand the concept of harmonics
and overtones, let us study vibrations of air
column.

6.7.1 End Correction:

When an air column vibrates either in a
pipe closed at one end or open at both ends,
boundary conditions demand that there is
always an antinode at the open end(s) (since
the particles of the medium are comparatively
free) and a node at the closed end (since there is
hardly any freedom for the particles to move).
The antinode is not formed exactly at the open
end but it is slightly beyond the open end as air
is more free to vibrate there in comparison to
the air inside the pipe. Also as air particles in
the plane of open end of the pipe are not free
to move in all directions, reflection takes place
at the plane at small distance outside the pipe.
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The distance between the open end of the pipe
and the position of antinode is called the end
correction. According to Reynold, to the first
approximation, the end correction at an end is
given by e = 0.3d, where d is the inner diameter
of the pipe. Thus the length L of air column is
different from the length | of the pipe.

For a pipe closed at one end

The corrected length of air column L = length
of air column in pipe | + end correction at the
open end.

~L=l+e - (6.13)

For a pipe open at both ends

The corrected length of air column L = length
of air column in pipe | + end corrections at
both the ends.

S L=1+2e - (6.14)

6.7.2 Vibrations of air column in a pipe
closed at one end:

Consider a long cylindrical tube closed at
one end. It consists of an air column with rigid
boundary at one end. When a vibrating tuning
fork is held near the open end of the closed
pipe, sound waves are sent by the fork inside
the tube. Longitudinal waves traveling along
a pipe of finite length are reflected at the ends
as transverse waves are refelcted at the fixed
ends of a string. The phase of the reflected
wave depends on whether the end of the pipe
is open or closed and how wide or narrow the
pipe is in compansion to the wavelength of
longitudinal wave like a sound wave.

At the closed end there is least freedom
for motion of air particles. Thus, there must be
a node at the closed end. The particles little
beyond the open end are most free to vibrate.
As a result, an antinode must be formed little
beyond the open end. The lenght | of pipe and
length L of air column are shown separately in
all the figures (refer Figs. 6.9 and 6.10).

The first mode of vibrations of air column
closed at one end is as shown in Fig. 6.9 (a).

oA g f
: Fig. 6.9 (a): Set-up for
generating vibrations
' i of air column in a
] ' R pipe closed at one end.

The distance of the

antinode from the open

end of the pipe has

‘ been exaggerated.

A4 i v
This is the simplest mode of vibration of

air column closed at one end, known as the

fundamental mode.

.. Length of air column

L:% and 1=4L

where A is the wavelength of fundamental
mode of vibrations in air column. If n is the

fundamental frequency, we have
V=ni
%

P
v

--- (6.15)
sn=
v

4L 4(l+e) (6.16)

The fundamental frequency is also known
as the first harmonic. It is the lowest frequency
of vibration in air column in a pipe closed at
one end.

The next mode of vibrations of air column
closed at one end is as shown in Fig. 6.9 (b).
Here the air column is made to vibrate in such
away (as shown in Fig. 6.9 (b)) that it contains
a node at the closed end, an antinode at the
open end with one more node and antinode
in between. If n_is the frequency and 2, is the
wavelength of wave in this mode of vibrations
in air column, we have, the length of the air

column | _34
4

ﬂ _ 4(l+e) . (617)

3 3
The velocity in the second mode is given
as v=nA4i,

.. v 3V 3V

T T AL 4t e

A=

~n,=3n --- (6.18)

This frequency is the third harmonic. It is

the first overtone. Remember that the overtones
are always numbered sequentially.
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Fig. 6.9 (b) and (c): First and second overtones
for vibrations of air column in a pipe closed
at one end. The distance of the antinode from
the open end of the pipe has been exaggerated.

The next higher mode of vibrations of air
column closed at one end is as shown in Fig.
6.10 (c). Here the same air column is made to
vibrate in such a way that it contains a node
at the closed end, an antinode at the open end
with two more nodes and antinodes in between.
If n, is the frequency and 2, is the wavelength
of the wave in this mode of vibrations in air
column, we have

. 51
Length of air column L="—"2
4L 4(l+e)
LA, =— = — (6.
27 5 5 (6.19)

The velocity this mode is given as
v=n,A1,

R A4 s

eI AL Al TN -- (6.20)

This frequency is the fifth harmonic. It is
the second overtone.

Continuing in a similar way, for the p*
overtone we get the frequency n,as
n, :(2p+1)n. -- (6.21)

Thus for a pipe closed at one end only odd
harmonics are present and even harmonics are
absent.

6.7.3 Vibrations of air column in a pipe open
at both ends:

In this case boundary conditions are such
that an antinode is present at each open end.
When a source of sound like a tuning fork
is held near one end of the pipe, it sends the
waves inside the pipe.

Even though both the ends of the pipe are
open, the air inside the pipe is still bound by the
wall of the tube. As a result, the air inside the
pipe is little denser than the air outside. When
the waves travel to the other open end, there is
partial reflection at the open end. The partially
reflected waves superimpose with the incident
waves. Under suitable conditions, stationary
waves will be formed. There is maximum
freedom for motion of air column at both the
ends as pipe is open at both ends.

Suppose a compression produced by a
tuning fork travels through the air column. It

. K Fum

[=\2 )
~y
A

Fig. 6.10: First three
modes of vibrations of
air column in a pipe
open at both ends.
[=3\,/2 The distance of the
antinodes from the
open ends of the pipe
has been exaggerated.

gets reflected as a rarefaction at open end. The
rarefaction moves back and gets reflected as
compression at the other end. It suffers second
reflection at open end near the source and then
interferes with the wave coming in by a path
difference of 2L.

The different modes of vibrations of air
column in pipe open at both ends are shown
in Fig. 6.10 (a), (b) and (c). The fundamental
tone or mode of vibrations of air column open
at both ends is as shown in Fig. 6.10 (a). There
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are two antinodes at two open ends and one
node between them.

. Lengthofaircolumn = L :% or, A=2L
\% \% \%

T T 2L 20420 ----(6.22)

andv=2nL ----(6.23)

This is the fundamental frequency or the
first harmonic. It is the lowest frequency of
vibration.

The next possible mode of vibrations of
air column open at both ends is as shown in
Fig. 6.10 (b). Three antinodes and two nodes
are formed.

.. Length of air column =L=2,

e, A, =L=(1+2e) ----(6.24)
If n,and A are frequency and wavelength
of this mode of vibration of air column
respectively, then

v=n4
\4 v \4
n=—=—=
A L (I+2e)
~.n =2n --- (6.25)

This is the frequency of second harmonic
or first overtone.

In the next of vibrations of air column
open at both ends (as shown in Fig. 6.10 (c)),
four antinodes and three nodes are formed.

..Length of air column=L = %
=2 2(1226) - (6.26)

If n, and A, are the frequency and
wavelength of this mode of vibration of air
column respectively, then v =n,A,

_3v_ 3v

AL A
A, 2L 2(I+2e)

~.n,=3n --- (6.27)

This is the frequency of third harmonic or
second overtone.

Thus all harmonics are present as
overtones in the modes of vibration of air
column open at both ends.

Continuing in this manner, the frequency npfor
povertone is,

n,= (p+1)n --- (6.28)
where n is the fundamental frequency and p =
0,1,2,3...

It may be noted that

1. Sound produced by an open pipe contains
all harmonics. Its quality is richer than
that produced by a closed pipe.

2. Fundamental frequency of vibration of air
column in an open pipe is double that of
the fundamental frequency of vibration in
a closed pipe of the same length.

Using the formula and knowing values
of n, I and end correction velocity of sound
in air at room temperature can be calculated.
As discussed earlier, the antinodes are formed
little beyond the open ends of the pipe. It is
however not possible to locate the positions
of the antinodes precisely. Therefore, in
experiments, the length of the pipe is measured
and end corrections are incorporated.

6.7.4 Practical Determination of End

Connection:

An exact method to determine the end
correction, using two pipes of same diameter
but different lengths I and L, is as follows.

For a pipe open at both ends:

v=2mL =2n,L, ysing Eq. (6.23)
~n L, =n,L,
nl(l1 +2e)=n, (lz+2e)
e = mly —nl, or nyl, —nl, - (6.29)
2(n2—n1) Z(nl—nz)

For a pipe closed at one end:
v=4nL =4n,L,

somLi=n,L,
o (l+e)=n,(l,+e)
_ml—nyl, nyl, —ml, --- (6.30)
2(112 —nl) or 2(”1 _”2)
) Remember this> N

For correct value of end correction, the inner
diameter of pipe must be uniform throughout
its length. It may be noted that effect of flow
of air and effect of temperature of air outside

 the tube has been neglected.
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Example 6.4: An air column is of length
17 cm long. Calculate the frequency of 5™
overtone if the air column is (a) closed at
one end and (b) open at both ends. (\elocity
of sound in air = 340 ms?).

Solution: Given

Length of air column =17cm = 0.17m
Overtone number p = 5 and velocity of
sound in air = 340 ms™.

For an air column closed at one end,

Fundamental frequency - Y- - 340
4L 4x0.17
=500 Hz
For fifth overtone, n, =(2p+1)n
=(2x5+1)x500
=5500Hz

For an air column open at both ends,

v 340
Fundamental frequency LT 2x017
n=1000 Hz

For fifth overtone, n, =(p+1)n

n°, =(2p+1)n° and n° :%

ny = 6000 Hz
Example 6.5 : A closed pipe and an open
pipe have the same length. Show that
no mode of the closed pipe has the same
wavelength as any mode of the open pipe.
Solution: For a closed pipe (that is a pipe
closed at one end and open at the other),
the frequency of allowed modes is given by
n®, :(2p+1)nc and n° :%
using Egs. (6.21) and (6.16) , where p is any
integer.

c
p

4L

2p+1
On the other hand, for an open pipe (that is
pipe open at both the ends), the frequency of
allowed modes is given as no = 2L, where

. . 1
m is an integer. "t
AL 2L

If A, = 4, itwould mean 5 =7~

, Where p is any integer.

m+1-
Or, 2 (m +1) = 2p + 1 which is not possible.
Hence the two pipes cannot have modes
with the same frequency or wavelength.

| from this activity?

Take a glass
tube open at both
ends and clamp

Fork it so that its one

1=/4 ' end dips into a
l Air  glass  cylinder
v | containing water
as shown in the

mma— Water accompanying
figure. By
changing the
position of the
tube at the clamp,
you can adjust the length of the air column
in the tube. Hold a vibrating tuning fork of
frequency 488 Hz or 512 Hz just above the
open end of the tube and make the air column
vibrate. What is the difference between the
sounds that you hear? The sound will be
louder. This is an example of resonance.
This set-up is a resonance tube. Note the
heights of the air column when you hear
louder sound. Interpret your observations.
Take another tuning fork of the same
frequency as the first one. Vibrate them
together above the open end of the tube. Do
you hear beats? If the two tuning forks are of
same frequency, you should not hear beats.
In practice, due to usage, frequencies change
and in most of the cases, you will hear beats.
If you do not hear beats, there can be two
reasons : (i) frequencies of the two forks
are exactly same or (ii) the frequencies are
very much different (difference greater than
6-7 Hz) and we cannot recognize the beats.
Then wind a piece of thread around the tong
of one of the tuning fork so that its frequency
changes slightly. Try to hear the beats. By
changing the position of the thread, vary the
frequency and note down your observations
systematically. What information you get

J
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Take two pipes of slightly different
diameters, open at both the ends, so that
one pipe can be moved freely inside
the other. Keep the wider pipe fixed by

clamping on a stand

and move the other

pipe up and down

g\\ by hand as shown in
(— the  accompanying
figure. Use a tuning
fork of frequency
320 Hz or 288 Hz
= and keep it above the

/] open end of the fixed
| pipe. Move the inner
tube and try to hear

the various sound patterns and write down
your observations. Try to analyze the results
based on the knowledge you have from the
sound pattern formed with a pipe open at
both ends.

| J

6.7.5 Vibrations Produced in a String:

Consider a string of length | stretched
between two rigid supports. The linear density
(mass per unit length of string) is m and the
tension T acts on the string due to stretching. If
it is made to vibrate by plucking or by using a
vibrator like a tuning fork, a transverse wave
can be produced along the string.

When the wave reaches to the fixed ends
of the string, it gets reflected with change
of phase by = radians. The reflected waves
interfere with the incident wave and stationary
waves are formed along the string. The string
vibrates with different modes of vibrations.

If a string is stretched between two rigid
supports and is plucked at its centre, the string
vibrates as shown in Fig 6.11 (a). It consists
of an antinode formed at the centre and nodes
at the two ends with one loop formed along
its length. If A is the wavelength and | is the
length of the string, we get

/1
Length of loop = + =

. .x =2
The frequency of vibrations of the string,

\% 1 |T T
== |— V= J—
A 2l \m ( mJ

This is the lowest frequency with which
the string can vibrate. It is the fundamental

< P (a)

Fig. 6.11: Different modes of vibrations of a
stretched string.

frequency of vibrations or the first harmonic.

If the centre of the string is prevented from
vibrating by touching it with a light object and
string is plucked at a point midway between
one of the segments, the string vibrates as
shown in Fig. 6.11 (b).

Two loops are formed in this mode of
vibrations. There is a node at the centre of the
string and at its both ends. If 4, is wavelength

of vibrations, the length of one loop = —~- =~

2 2
S =1
Thus, the frequency of vibrations is given as
1 /T
n=—,—
A \m
1T
no=—,—
[ \'m



Comparing with fundamental frequency
we get that n,=2n.

Thus the frequency of the first overtone
or second harmonic is equal to twice the
fundamental frequency.

The string is made to vibrate in such away
that three loops are formed along the string as
shown in Fig. 6.11 (c). If 4, is the wavelength
here, the length of one loop is ?2 =3

2
3
Therefore the frequency of vibrations is

1 |T
l/lz:l— —
, N M

3 |T

oA,

n,=—
> 20\'m
Comparing with fundamental frequency,

we get that n,=3n.

Thus frequency of second overtone or third
harmonic is equal to thrice the fundamental
frequency. Similarly for higher modes of
vibrations of the string, the frequencies of
vibrations are as 4n, 5n, 6n...etc. Thus all
harmonics are present in case of a stretched
string and the frequencies are given by

n,=pn --- (6.25)

Example 6.6: Astring is fixed at both ends.
What is the ratio of the frequency of the first
harmonic to that of the second harmonic?
Solution: For a string of length | fixed at
both ends, the wavelengths of the first and
second harmonics are given as | = A/2 and
| = A, respectively. Hence the ratio of their
frequencies is

Example 6.7: The velocity of a transverse
wave on a string of length 0.5 m is 225 m/s.
(a) What is the fundamental frequency of a
standing wave on this string if both ends are

(kept fixed? (b) While this string is vibrating
in the fundamental harmonic, what is the
wavelength of sound produced in air if the
velocity of sound in air is 330 m/s?
Solution: The wavelength of the
fundamental mode is A = 2I, hence the
fundamental frequency is

v 225m/s —22561 — 995 Hyz

"2 2x05m

While the string is vibrating in the
fundamental harmonic, the frequency of
the sound produced by the string will be
same as the fundamental frequency of the

string. The wavelength of sound produced

is _ V. _330m/s 1 467 m.

n  225s"

|\ J

6.7.6 Laws of a Vibrating String :

The fundamental frequency of a vibrating

string under tension is given as
1T
2\m
From this formula, three laws of vibrating
string can be given as follows:
1) Law of length: The fundamental frequency
of vibrationsofastringisinversely proportional
to the length of the vibrating string, if tension
and mass per unit length are constant.

- (6.32)

n

noc } if T and m are constant. --- (6.33)
I
2) Law of tension: The fundamental frequency

of vibrations of a string is directly proportional
to the square root of tension, if vibrating length
and mass per unit length are constant.

no ~T ,if land m are constant. --- (6.34)
3) Law of linear density: The fundamental
frequency of vibrations of a string is inversely
proportional to the square root of mass per
unit length (linear density), if the tension and
vibrating length of the string are constant.

1 .
no —— ,if Tand | are constant. --- (6.35)
Jm

If ris the radius and p is the density of material
of string, linear density is given as
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Linear density = mass per unit length
= volume per unit length x density
=(xr*l/hp
As nc — | if T and | are constant, we get
Jm

1
Jrrip
" nocL and nocl
Jp r
Thus the fundamental frequency of
vibrations of a stretched string is inversely
proportional to (i) the radius of string and (ii)

the square root of the density of the material of
vibrating string.

noc

--- (6.36)

rExampIe 6.8: A string 105 cm long is |
fixed at one end. The other end of string is
moved up and down with frequency 15 Hz.
A stationary wave, produced in the string,
consists of 3 loops. Calculate the speed of
progressive waves which have produced the
stationary wave in the string.
Solution: Given
Length of string =1 = 105 cm = 3 loops
1ma
) :gl :§x105 =70cm =0.70 m
Speed of wave = v =nA
L v=15x0.70=10.50m s’

6.8 Sonometer:

A sonometer consists of a hollow
rectangular wooden box called the sound box.
The sound box is used to make a larger mass
of air vibrate so that the sound produced by
the vibrating string (metal wire in this case)
gets amplified. The same principle is applied
in stringed instruments such as the violin,
guitar, tanpura etc. There are two bridges P
and Q along the width of the box which can be
moved parallel to the length of box. A metal
wire of uniform cross-section runs along the
length of the box over the bridges. It is fixed at
one end and its other end passes over a pulley.
A hanger with suitable slotted weights can be
attached to the free end of wire. By changing

the weights, the tension in the wire can be
varied. The movable bridges allow us to
change the vibrating length AB of the wire.

Hook T
S M ,/ Efé /\ Pulley
B —
PA/ QA/ .
7 & Wire
(@] (@]

/ Sound box /
4 Hanger
Slotted
weights

Fig. 6.12: Experimental set-up of a sonometer.

If the wire is plucked at a point midway
between the bridges, transverse waves are
produced in the wire. Stationary waves are
produced between the two bridges due to
reflection of transverse wave at the bridges
and their superposition. Thus portion AB of
the wire between the two bridges P and Q is
the vibrating length. Wire can also be made to
vibrate by holding a vibrating tuning fork near
it. The frequency of vibration is then same
as that of the tuning fork. If this frequency
happens to be one of the natural frequencies of
the wire, standing waves with large amplitude
are set up in the wire since the two vibrate in
resonance.

To identify the resonance, a small piece of
paper, known as the rider R, is placed over the
wire at a point in the middle of the length AB
as determined by the position of the bridges P
and Q. If the frequency of the tuning fork and
of the fundamental mode of vibration of the
wire match (this is achieved by adjusting the
length AB of wire using the bridges P and Q),
the paper rider happens to be at the antinode
and flies off the wire.

Sonometer can be used to verify the laws
of a vibrating string.

1) Verification of first law of a vibrating
string:

By measuring length of wire and its
mass, the mass per unit length (m) of wire is
determined. Then the wire is stretched on the
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sonometer and the hanger is suspended from
its free end. A suitable tension (T) is applied
to the wire by placing slotted weights on the
hanger. The length of wire (l,) vibrating with
the same frequency (n,) as that of the tuning
fork is determined as follows.

A light paper rider is placed on the wire
midway between the bridges. The tuning fork
is set into vibrations by striking on a rubber
pad. The stem of tuning fork is held in contact
with the sonometer box. By changing distance
between the bridges without disturbing paper
rider, frequency of vibrations of wire is
changed. When the frequency of vibrations of
wire becomes exactly equal to the frequency of
tuning fork, the wire vibrates with maximum
amplitude and the paper rider is thrown off.

In this way a set of tuning forks having

different frequencies n, n, n, ............are
used and corresponding vibrating lengths of
wire are noted as 11 12 I3.......... by keeping
the tension constant (T) . We will observe that
nl=nl=nl=.... = constant, for constant
value of tension (T) and mass per unit length
(m).

-.nl = constant

) 1 .
i.e,no T , iIf T and m are constant.

Thus, the first law of a vibrating string is
verified by using a sonometer.

2) Verification of second law of a vibrating
string:

The vibrating length (I) of the given wire
of mass per unit length (m) is kept constant for
verification of second law. By changing the
tension the same length is made to vibrate in
unison with different tuning forks of various
frequencies. If tensions T, T, T
correspond to frequencies n,, n,, n,.........
we will observe that.

no_
NGNS
n

or —— = constant
Jr

= constant

s nocJT if l'and m are constant. This is
the second law of a vibrating string.
3) Verification of third law of a vibrating
string:

For verification of third law of a vibrating
string, two wires having different masses per
unit lengths m, and m, (linear densities) are
used. The first wire is subjected to suitable
tension and made to vibrate in unison with
given tuning fork. The vibrating length is noted
as (I). Using the same fork, the second wire
Is made to vibrate under the same tension and
the vibrating length (1) is determined. Thus the
frequency of vibration of the two wires is kept
same under same applied tension T. Itis found

that,
/, Ny = l,\m,

I\/m = constant 1
But by first law of a vibrating string, n o 1

m
are constant. This is the third law of vibrating

string.
In this way, laws of a vibrating string are
verified by using a sonometer.

1
Therefore we get that, n «« —, if T and |
Jm

rExample 6.9: A sonometer wire of length
50 cm is stretched by keeping weights
equivalent of 3.5 kg. The fundamental
frequency of vibration is 125 Hz. Determine
the linear density of the wire.
Solution: Given, |=50cm=0.5m,T=3.5
kg x 9.8 m/s? =34.3N,n=125Hz

1 [T
n=—,|—
21\ m
LT
4/° m
. m— T
o 4n?l?

343
m= 2 2
4x(125) x(0.5)
m=2.195x10" kgm™
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Example 6.10: Two wires of the same
material and the same cross section are
stretched on a sonometer in seccuession.
Length of one wire is 60 cm and that of the
other is 30 cm. An unknown load is applied
to the first wire and second wire is loaded
with 1.5 kg. If both the wires vibrate
with the same fundamental frequencies,
calculate the unknown load.
Solution: Two wires are given to be of the
same material and having the same cross
section,

Sm=m,=m
Same fundamental frequency, N, =N, =n
,L=60cm=0.6m, I,=30cm =0.3m,
T,=15x98N =

For the first wire, n, :L 2
ml

For the second wire, n, = /T
Sy T xm,

T, xm,

.2_0_/ I, xm
“n 06V1.5%x9.8xm

1-L
2V 1%

F

T
T 15%98

ST, =6x9.8N

-.Applied load = 6 kg.
Example 6.11: A wire has linear density
4.0 x 102 kg/m. It is stretched between
two rigid supports with a tension of 360 N.
The wire resonates at a frequency of 420
Hz and 490 Hz in two successive modes.
Find the length of the wire.
Solution: Given m = 4.0 x 103 kg/m, T =
360 N. Let the wire vibrate at 420 Hz and
490 Hz in its p" and (p+1)" harmonics.
Then np = np where n is the fundamental

or, -

i frequency

420Hz= P |T and 490Hz= 2+! |T
21\'m 20 \'m

490 p+1

420 p

or,n=6

Using this value of p, for the frequency of
p® harmonic, we get

900
420 Hz = o 36?3N =——m/s
21\ 4.0x10°kg/ m |
. 1=900/420 m=2.14m

6.9 Beats:

This is an interesting phenomenon
based on the principle of superposition of
waves. When there is superposition of two
sound waves, having same amplitude but
slightly different frequencies, travelling in the
same direction, the intensity of sound varies
periodically with time. This phenomenon is
known as production of beats.

The occurrences of maximum intensity
are called waxing and those of minimum
intensity are called waning. One waxing and
successive waning together constitute one
beat. The number of beats heard per second is
called beat frequency.

6.9.1 Analytical method to determine beat
frequency:

Consider two sound waves, having same
amplitude and slightly different frequencies n,
and n,. Let as some that they arrive in phase at
some point x of the medium. The displacement
due to each wave at any instant of time at that
point is given as

. x
Y, =asin{ 2w ”J_Z

. x
y,=a sm{Zn [nzt _Z]}

Let us assume for simplicity that the listener
isatx=0.
v, =asin(2rwn,t)
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and y, =asin(2rn,t)
According to the principle of superposition of
waves,

y=Yi+Y,
- y=asin(2znt)+asin(27n,t)
or,
y=2a sin[27r (%)t} cos{27r (LGzjt}

--- (6.31)
[By using formula,

sinC+sinD:2sin(C;DJCOS(C;DJ]

Rearranging the above equation, we get

y :2000{2%(}112—%)t}sin{Zn(n12+n2)l}

Substituting 5, cog 2re(n, — 1y, t} — 4
2

and MM _ o weget
2

y= Asin(27rnt) --- (6.37)

This is the equation of a progressive wave
having frequency n and amplitude A. The
frequency n is the mean of the frequencies n,
and n, of arriving waves while the amplitude A
varies periodically with time.

The intensity of sound is proportional
to the square of the amplitude. Hence the
resultant intensity will be maximum when the
amplitude is maximum.

For maximum amplitude (waxing),
A=+2a

2 _
2acos {M}t =12a
2
2 _
or, COS[M} ==+1

i.e.{277;(n] ;nz jl} =0,7,27,3m

1 2 3
.'.lIO, — , geere
n_n, n—n, n-—n,,

Thus, the time interval between two
successive maxima of sound is always

n—n,

Hence the period of beats is T =—— .
1 2

The number of waxing heard per second is the
reciprocal of period of waxing.
- frequency of beats, N=n —n, ---(6.33)
The intensity of sound will be minimum
when amplitude is zero (waning):
For minimum amplitude, A =0,
n—n,

<. 2a cos 2n(—]t =0
OI’,2

cos{27r [uj t} =0

2
P el P A LA
" 2 27272

1 3 5
2(“1 _nz) , z(nl_nz) , 2(“1 _nz),

between two
, Which is

Therefore time interval
successive minima is also
expected.

(n - nz)

1

I 1.0

y 0
-1.0

Fig. 6.13: Superposition of two harmonic waves
of nearly equal frequencies resulting in the
formation of beats.

By comparing the instances of successive
waxing and waning, we come to know that
waxing and waning occur alternately with
equal frequency.

The variation in the loudness of sound
that goes up and down is the phenomenon
of formation of beats. It can be considered
as superposition of waves and formation of
standing waves in time at one point in space
where waves of slightly different frequencies
are passing. The two waves are in and out
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of phase giving constructive and destructive
interference. The interval between two
maximum sound intensities is the time period
of beats.

) Remember this> ~

We can hear beatsif the frequency difference
between the two superimposed waves is
very small (practically less than 6-7 Hz,
for normal human ear). At frequencies
higher than these, individual beats cannot
be distinguished from the sound that is
produced.

|\ J

e Take two tuning forks of the same
frequency.

e Put some wax on the prongs of one of
the forks.

» Vibrate both the tuning forks and keep
them side by side.

e Listen to the periodic vibrations of
loudness of resulting sound.

e How many beats have you heard in one
minute?

e Can you guess whether frequency of
tuning fork is increased or decreased by
applying wax on the prong?

* How you can find the new frequency of
the fork after applying wax on it.

| J

6.9.2 Applications of beats :

1] The phenomenon of beats is used for
matching the frequencies of different
musical instruments by artists. They go
on tuning until no beats are heard by
their sensitive ears. When beat frequency
becomes equal to zero, the musical
instruments are in unison with each other
i.e., their frequencies are identical and the
effect of playing such instruments gives a
pleasant music.

2] Thespeedofanairplane canbe determined
by using Doppler RADAR.

If either a source of sound or a listener

(or both) is moving with respect to air, the

listener detects a sound whose frequency

is different from the frequency of the
sound source. This is Doppler effect.

A microwave signal (pulse) of known
frequency is sent towards the moving airplane.
Principle of Doppler effect giving the apparent
frequency when the source and observer are
in relative motion applies twice, once for
the signal sent by the microwave source and
received by the airplane and second time
when the signal is reflected by the airplane
and is received back at the microwave
source. Phenomenon of beats, arising due to
the difference in frequencies produced by
the source and received at the source after
reflection from the air plane, allows us to
calculate the velocity of the air plane.

The same principle is used by traffic
police to determine the speed of a vehicle to
check whether speed limit is exceeded. Sonar
(Sound navigation and ranging) works on
similar principle for determining speed of
submarines using a sound source and sensitive
microphones.

Doppler ultrasonography and echo
cardiogram work on similar principle. Doctors
use an analogous set up to assess the direction
and speed of blood flow in a human body and
identify circulation problems. Measurement of
the dimension of the blood vessels can be used
to estimate the volume flow rate. Ultrasound
beams also determine phase shifts to diagnose
vascular problems in arteries and veins.

3] Unknown frequency of a sound note can
be determined by using the phenomenon
of beats. Initially the sound notes of
known and unknown frequency are heard
simultaneously. The known frequency
from a source of adjustable frequency
is adjusted in such a way that the beat
frequency reduces to zero. At this stage
frequencies of both the sound notes
become equal. Hence unknown frequency
can be determined.
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Example 6.12: Two sound waves having
wavelengths 81cm and 82.5 cm produce
8 beats per second. Calculate the speed of
sound in air.

Solution: Given
A, =8lcm = 0.81m
A,= 825cm = 0.825m

\'% \'%
nl = = —
A, 0.81
A
A, 0825
Here )“1 <)*25 Snp>ny
As 8 beats are produced per second,
n—n,=38
LA A
2’1 )“2

SV R
|:;tl 12:|

1 1
oV ————|=8
{0.81 0.825}
v =3564

Example 6.13: Two tuning forks having
frequencies 320 Hz and 340 Hz are sounded
together to produce sound waves. The
velocity of sound in air is 326.4 m s*. Find
the difference in wavelength of these waves.
Solution: Given

n, =320 Hz, n,= 340 Hz, v =326.4 ms™.
v=nA =n,4,

Here,n, <n, ..A >A
v v
A —Ay=—-—
1 2 nl n2
A=A, = V|:i—i:|
nl n2
SA A, =3264 LI
320 340
sA -A,=0.06 m
. J

6.10 Characteristics of Sound:
Sound has three characteristics:
pitch and quality.

1. Loudness: Loudnessisthe human perception
to intensity of sound. We know that when a

loudness,

sound wave travels through a medium, there
are regions of compressions and rarefactions.
Thus there are changes in pressure. When
a sound is heard, say by a human, the wave
exerts pressure on the human ear. The pressure
variation is related to the amplitude and hence
to the intensity. Depending on the sound
produced, the variation in this pressure is
from 28 Pa for the loudest tolerable sound
to 2.0 x 10° Pa for the feeblest sound like
a whisper that can be heard by a human.
Intensity is a measurable quantity while
the sensation of hearing or loudness is very
subjective. It is therefore important to find
out how does a sound of intensity | affect a
detectable change Al in the intensity for the
human ear to note. It is known that the value
of such Al depends linearly on intensity | and
this fact allows humans to deal with a large
variation in intensity.

The response of human ear to sound is
exponential and not linear. It depends upon the
amount of energy crossing unit area around a
point per unit time. Intensity is proportional to
the square of amplitude. It also depends upon
various other factors like distance of source
from the listener, the motion of air, density of
medium, the surface area of sounding body etc.
The presence of other resonant objects around
the sounding body also affects loudness of
sound.

Scientifically, sound is specified not by its
intensity but by the sound level 3 (expressed in
decibles (dB)), defined as

I
B =10 log,, m ,
0
where 1 is a minimum reference intensity

(102 W/m?) that a normal human ear can hear.
Sound levels are then expressed in decibel
(dB). When | =1, B =0, thus the standard
reference intensity has measure of sound level
0 dB. The unit of difference in loudness is bel.
You have studied about this unit in X" Std.

--- (6.39)
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1 decibel = i bel
10

As mentioned above, minimum audible
sound is denoted by 0 dB while whispering
and normal speech have levels 10 dB and 60
dB respectively at a distance of approximately
1 m from the source. The intensity level of
maximum tolerable sound for a human ear is
around 120 dB.

Loudness is different at different
frequencies, even for the same intensity. For
measuring loudness the unit phon is used.
Phon is a measure of loudness. It is equal to
the loudness in decibel of any equally loud
pure tone of frequency 1000Hz.

2. Pitch: It is a sensation of sound which
helps the listener to distinguish between a high
frequency and a low frequency note. Pitch is
the human perception to frequency- higher
frequency denotes higher pitch. The pitch of
a female voice is higher than that of a male
voice.

3. Quality or timbre: Normally sound
generated by asource hasanumber of frequency
components with different amplitudes. Quality
of sound is that characteristic which enables
us to distinguish between two sounds of same
pitch and loudness. We can recognize the
voice of a person or an instrument due to its
quality of sound. Quality depends on number
of overtones present in the sound along with a
given frequency.

A sound which produces a pleasing
sensation to the ear is a musical sound. It is
produced by regular and periodic vibrations
without any sudden change in loudness.
Musical sound has certain well-defined
frequencies with sizable amplitude; these
are normally harmonics of a fundamental
frequency. A mixture of sounds of different
frequencies which do not have any relation
with each other produces what we call a noise.
Noise therefore is not pleasant to hear. If in
addition, it is loud, it may cause headaches.

A sequence of frequencies which have a
specific relationship with each other is called
a musical scale. Normally both in Indian
classical music and western classical music,
eight frequencies, in specific ratio, form an
octave, each frequency denoting a specific
note. In a given octave frequency increases
along sa re ga ma pa dha ni sa (as well as
along Do Re Mi Fa So La Ti Do). An example
of values of frequencies is 240, 270, 300, 320,
360, 400, 450, 480 Hz respectively.

6.11 Musical instruments:

Audible waves originate in vibrating
strings, vibrating air columns and vibrating
plates and membranes. Accordingly, musical
instruments are classified into three main types.
(a) Stringed instruments (b) wind instruments
(c) percussion instruments.

a) Stringed instruments: consist of stretched
strings. Sound is produced by plucking of
strings. The strings are tuned to certain
frequencies by adjusting tension in them. They
are further of three different types.

1) Plucked string type: In these instruments
string is plucked by fingers, e.g., tanpura,
sitar, guitar, veena, etc.

2) Bowed string type: In these instruments, a
string is played by bowing, e.g., violin, sarangi.
3) Struck string type: the string is struck by a
stick , e.g. santoor, piano.

b) Wind instruments: These instruments
consist of air column. Sound is produced by
setting vibrations of air column. They are
further of three different types

1) Freewind type: In these instruments free
brass reeds are vibrated by air. The air is
either blown or compressed. e.g., mouth organ,
harmonium etc.

2) Edge type: In these instruments air is blown
against an edge. e.g., Flute.

3) Reedpipes: They may consists of single
or double reeds and also instruments without
reeds .e.g., saxophone, clarinet (single reed),
bassoon (double reed), bugle (without reed).
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c) Percussion  instruments:  In  these
instruments sound is produced by setting
vibrations in a stretched membrane. e.g., tabla,
drum, dhol, mridangam, sambal, daphali,etc.
They also consist of metal type of instruments
which produce sound when they struck against
each other or with a beater. e.g., cymbals (i.e.,
jhanja), xylophone, etc.

A blow on the membrane or plate or
plucking of string produces vibrations with
one fundamental and many overtones. A
superposition of several natural modes of
oscillations with different amplitudes and
hence intensities characterize different
musical instruments. We can thus distinguish
the instruments by their sounds.

Production of different notes by musical
instrument depends or the creation of
stationary waves. For a stringed instrument
such as guitar or sitar, the two ends of the
string are fixed. Depending as where the string
is plucked, stationary waves of various modes
midpoint minimum. In wind instruments, air
column is made to vibrate by blowing. By
changing the length of air column rote can be
charged. In wind instrument like flute, holes
can be uncovered to change the vibrations of
air column this changes the pattern of nodes
act antinodes.

In practice, sound produced is made up
of several stationary waves having different
patterns of nodes and antinodes. Musicians
skill is stimulating the string or air column to
produce direct mixture of frequencies.

,—C) Do you know? ~

Sir C.V. Raman, the great physicist and
the first Noble Laureate of India, had done
research on the Indian classical musical
instruments such as mridangam and
tabla. Read more about his research work
in this field from website: https://www.
livehistoryindia.com c.v.ramans work on
Indian music.

C) Internet my friend%

e https://www.acs.psu.edu/drussell/
Demos/superposition/superposition.html

* https://www.acs.psu.edu/drussell/
demos.html

e https://www.google.com/
search?client=firefox-b-
d&q=superposition+of+waves

* https://lwww.youtube.com/watch?v=J_
Oto3mUluk

e https://www.youtube.com/
watch?v=GsP5LqGtkwE

e https://www.acs.psu.edu/
drussell/Demos/StandingWaves/
StandingWaves.html

* https://www.physicsclassroom.com/
class/waves/Lesson-4/Formation-of-
Standing-Waves

e https://www.physicsclassroom.com/
class/waves/Lesson-4/Formation-of-
Standing-Waves

e https://www.youtube.com/watch?v=-
D9UIPcJSRM

e https://www.youtube.com/
watch?v=jHjXNFmm8y4

e https://www.youtube.com/
watch?v=BWqyXHKhazZ8

» https://physics.info/waves-standing/

e https://www.youtube.com/
watch?v=nrJrV_Gn_Cw&t=661s
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1. Choose the correct option.

i)

i)

When an air column in a pipe closed at
one end vibrates such that three nodes
are formed in it, the frequency of its

vibrations is ....... times the fundamental
frequency.
A2 (B)3 (C)4 (D) 5

If two open organ pipes of length 50 cm

and 51 cm sounded together produce 7

beats per second, the speed of sound is.

(A)307m/s  (B)327m/s

(C) 350m/s (D) 357ml/s

The tension in a piano wire is increased

by 25%. Its frequency becomes ..... times

the original frequency.

(A)0.8 (B)1.12 (C)1.25 (D) 1.56

Which of the following equations

represents a wave travelling along the

y-axis?

(A) X= Asin(ky —a)t)

(B) y=Asin(kx—ot)

C€) y= Asin(ky)cos(a)t)

(D) y=Acos(ky)sin(wr)

A standing wave is produced on a string

fixed at one end with the other end free.

The length of the string

(A) must be an odd integral multiple of
AMA4.

(B) must be an odd integral multiple of
M2.

(C) must be an odd integral multiple of A.

(D) must be an even integral multiple of A.

2. Answer in brief.

i)

Awave is represented by an equation y =
Asin (Bx + Ct). Given that the constants
A, B and C are positive, can you tell in
which direction the wave is moving?

A string is fixed at the two ends and is
vibrating in its fundamental mode. It is
known that the two ends will be at rest.
Apart from these, is there any position on

ii)

iv)

10.
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the string which can be touched so as not
to disturb the motion of the string? What
will be the answer to this question if the
string is vibrating in its first and second
overtones?

What are harmonics and overtones?

For a stationary wave set up in a string
having both ends fixed, what is the ratio
of the fundamental frequency to the
second harmonic?

The amplitude of a wave is represented by

in SI units.
y=0.2sin4r X
0.08 0.8

Find (a) wavelength, (b) frequency and

(c) amplitude of the wave.
State the characteristics of progressive
waves.
State the characteristics of stationary
waves.
Derive an expression for equation of
stationary wave on a stretched string.
Find the amplitude of  the
resultant wave produced due to
interference of two waves given as
Y, =4 sinot y,=A4, sin(a)t +(p)
State the laws of vibrating strings and
explain how they can be verified using a
sonometer.
Show that only odd harmonics are present
in the vibrations of air column in a pipe
closed at one end.
Prove that all harmonics are present in
the vibrations of the air column in a pipe
open at both ends.
A wave of frequency 500 Hz is travelling
with a speed of 350 m/s.
(a) What is the phase difference between
two displacements at a certain point at
times 1.0 ms apart? (b) what will be the
smallest distance between two points
which are 45° out of phase at an instant
of time?

[Ans : mt, 8.75cm ]
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11.

12.

13.

14.

15.

16.

17.

A sound wave in a certain fluid medium
is reflected at an obstacle to form a
standing wave. The distance between
two successive nodes is 3.75 cm. If the
velocity of sound is 1500 m/s, find the
frequency.
[Ans : 20 kHZz]
Two sources of sound are separated by
a distance 4 m. They both emit sound
with the same amplitude and frequency
(330 Hz), but they are 180° out of phase.
At what points between the two sources,
will the sound intensity be maximum?
[Ans: £0.25, £ 0.75, £ 1.25 and +
1.75 m from the point at the center]
Two sound waves travel at a speed of 330
m/s. If their frequencies are also identical
and are equal to 540 Hz, what will be
the phase difference between the waves
at points 3.5 m from one source and 3 m
from the other if the sources are in phase?
[Ans : 1.64 7]
Two wires of the same material and
same cross section are stretched on a
sonometer. One wire is loaded with 1.5
kg and another is loaded with 6 kg. The
vibrating length of first wire is 60 cm and
its fundamental frequency of vibration
is the same as that of the second wire.
Calculate vibrating length of the other
wire.
[Ans: 1.2 m]
A pipe closed at one end can produce
overtones at frequencies 640 Hz, 896 Hz
and 1152 Hz. Calculate the fundamental
frequency.
[Ans: 128 Hz]
A standing wave is produced in a tube
open at both ends. The fundamental
frequency is 300 Hz. What is the length
of tube? (speed of the sound = 340 m s%).
[Ans: 0.57 m]
Find the fundamental, first overtone and
second overtone frequencies of a pipe,
open at both the ends, of length 25 cm if
the speed of sound in air is 330 m/s.
[Ans: 660 Hz, 1320 Hz, 1980 Hz]

18.

19.

20.

21.

22.

23.

24.

A pipe open at both the ends has a
fundamental frequency of 600 Hz. The
first overtone of a pipe closed at one
end has the same frequency as the first
overtone of the open pipe. How long are
the two pipes?
[Ans : 27.5 cm, 20.625 cm]
Astring 1m long is fixed at one end. The
other end is moved up and down with
frequency 15 Hz. Due to this, a stationary
wave with four complete loops, gets
produced on the string. Find the speed of
the progressive wave which produces the
stationary wave.[Hint: Remember that
the moving end is an antinode.]
[Ans: 6.67 m s!]
Aviolin string vibrates with fundamental
frequency of 440Hz. What are the
frequencies of first and second overtones?
[Ans: 880 Hz, 1320 Hz]
A set of 8 tuning forks is arranged in a
series of increasing order of frequencies.
Each fork gives 4 beats per second with
the next one and the frequency of last
fork is twice that of the first. Calculate
the frequencies of the first and the last
fork.
[Ans: 28 Hz, 56 Hz]
A sonometer wire is stretched by tension
of 40 N. It vibrates in unison with a
tuning fork of frequency 384 Hz. How
many numbers of beats get produced in
two seconds if the tension in the wire is
decreased by 1.24 N?
[Ans: 12 beats]
A sonometer wire of length 0.5 m is
stretched by a weight of 5 kg. The
fundamental frequency of vibration is
100 Hz. Calculate linear density of wire.
[Ans: 4.9x10 kg/m]
The string of a guitar is 80 cm long and
has a fundamental frequency of 112 Hz. If
a guitarist wishes to produce a frequency
of 160 Hz, where should the person press
the string? [Ans : 56 cm]

kK
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7. Wave Optics

C) Can you recall? \

1. What does the formation of shadows
tell you about the propagation of light?

2. What are laws of reflection and
refraction?

3. What are electromagnetic waves?

4. What is the range of frequencies of
visible light?

5. What is meant by the phase at a point
along the path of a wave?

|\ J

7.1 Introduction:

In earlier standards we have learnt that
light travels in a straight line while travelling
through a uniform and homogeneous medium.
The path of light is called a ray of light.
On encountering an interface with another
medium, a ray of light gets reflected or
refracted, changes its direction and moves
along another straight line. The reflection
is such that (i) the incident ray, the reflected
ray and the normal to the boundary surface at
the point of incidence are in the same plane
and (ii) the angle of incidence, i.e., the angle
between the incident ray and the normal to
the reflecting surface, is equal to the angle of
reflection, i.e., the angle between the reflected
ray and the normal. For refraction of light
while travelling from medium 1 to medium 2,
the laws are (i) the incident ray, the refracted
ray and the normal to the boundary between
the two media at the point of incidence are in
the same plane and (ii) the angle of incidence
I, and the angle of refraction r, are related
by n, sini=n,sinr, where, n,and n, are the
absolute refractive indices of medium 1 and
medium 2 respectively.

We have also learnt about the reflection
of light produced by spherical mirrors and
refraction of light through prisms and curved
surfaces of lenses. The position and nature of

the image (whether real or virtual) depend on
the position of objects and the focal length of
the mirror or lens.

7.2 Nature of Light

7.2.1 Corpuscular Nature:

The formation of shadows as well
as images by mirrors and lenses has been
understood by considering rectilinear motion
of light rays. This fact led R. Descartes (1596-
1650) to propose a particle nature of light in
the year 1636. Newton (1642-1726) developed
this concept further and proposed that light is
made up of particles, i.e., corpuscles which
are hard, elastic and massless. A source of
light emits these corpuscles which travel
along straight lines in the absence of any
external force. When the light corpuscles
strike a reflecting surface, they undergo elastic
collisions and as a result follow the laws of
reflection. During refraction, it is the difference
in the attractive force between the corpuscles
and the particles of the medium that causes
a change in the direction of the corpuscles.
A denser medium exerts a larger attractive
force on light corpuscles to accelerate them
along the normal to the boundary. Thus,
Newton’s theory predicted that the speed of
light in denser medium would be higher than
that in a rarer medium. This contradicts the
experimental observation. In this theory, light
of different colours corresponds to corpuscles
of different sizes. Newton performed several
experiments in optics and could explain their
results based on his theory. The study of
optical phenomena under the assumption that
it travels in a straight line as a ray is called
ray optics or geometrical optics as geometry is
used in this study. The laws of reflection and
refraction and the formation of images that
we studied in earlier standards fall under this
category.
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7.2.2 Wave Nature:

To circumvent the difficulties in
corpuscular theory, it was proposed by the
Dutch physicist C. Huygens (1629-1695) in
the year 1668, that light is a wave. Huygens
assumed light to be a wave caused by
vibrations of the particles of the medium. As
light could also travel in vacuum, he assumed
that a hypothetical medium, called ether is
present everywhere including in vacuum. Note
that this ether is not the substance (ether gas)
that we come across in chemistry. There was
however, no evidence to prove its existence
and thus, it was difficult to accept the concept.

In the nineteenth century, certain new
phenomena of light namely, interference,
diffraction and polarization were discovered.
These could not be explained based on
corpuscular theory and needed wave theory for
their explanation. Huygens’ theory could not
only explain the new phenomena but could also
explain the laws of reflection and refraction,
as well as the formation of images by mirrors
and lenses. It was then accepted as the correct
theory of light. Wave theory showed that if
the speed of light waves in denser medium is
smaller than that in rarer medium then light
bends towards normal. Thus, wave nature
of light could explain all the visual effects
exhibited by light. The branch of optics which
uses wave nature of light to explain the optical
phenomena is called wave optics.

In this chapter we are going to study wave
optics and learn how the laws of reflection
and refraction can be explained assuming the
wave nature of light. We will also learn about
the phenomena of interference, diffraction
and polarization and their explanation based
on wave optics. The reason why geometrical
optics works in case of formation of shadows,
reflection and refraction is that the wavelength
of light is much smaller than the reflecting/
refracting surfaces as well as the shadow

causing objects that one encounters in
laboratory or in day-to-day life.

In XI"™ Std we have learnt Maxwell's
equations which suggested that light is an
electromagnetic wave. As all waves known
till Maxwell’s time needed a medium to
propagate, Maxwell invoked the all-pervading
hypothetical medium ether. The existence of
radio waves and their speed being same as that
of visible light, were experimentally verified
by H. Hertz later in the nineteenth century.
Michelson and Morley performed several
experiments to detect ether but obtained
negative result. The hypothesized ether was
never detected, and its existence and necessity
was ruled out by Albert Einstein (1879-
1955) when he proposed the special theory
of relativity in the year 1905, based on a
revolutionary concept of constancy of velocity
of light.

7.2.3 Dual Nature of Light:

In the early twentieth century, it was
accepted that light has a dual nature. It can
exhibit particle nature as well as wave nature
under different situations. Particles of light are
called photons. We will learn more about it in
Chapter 14.

7.3 Light as a Wave:

Light is an electromagnetic wave. These
waves are transverse in nature and consist of
tiny oscillating electric and magnetic fields
which are perpendicular to each other and to
the direction of propagation of the wave. These
waves do not require any material medium
for propagation and can even travel through
vacuum. The speed of light in a material
medium (v) depends on the refractive index
of the medium (n) which, in turn, depends on
permeability and permittivity of the medium.
The refractive index is equal to the ratio of
the speed of light in vacuum (c) to the speed
of light in the medium (v). The refractive
index of vacuum is 1 and that of air can be
approximated to be 1.
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) Do you know? ~

It was shown by Einstein in his special

theory of relativity that the speed of light

(c) does not depend on the velocity of the

source of light or the observer. He showed

that no object or information can travel

faster than the speed of light in vacuum
\which is 300,000 km/s.

J

Electromagnetic waves can have
wavelengths ranging from very small,
smaller than a femtometre (10°m), to very
large, larger than a kilometre. In the order
of increasing wavelength, the waves are
classified as vy-rays, X-rays, ultraviolet,
visible, infrared, microwave and radio waves.
Visible light comprises of wavelengths in
the 400-700 nm range. Waves of different
wavelengths in the visible range are perceived
by our eyes as different colours, with violet
having the shortest and red having the longest
wavelength. White light is a mixture of waves
of different wavelengths. The refractive index
of a medium depends on the wavelength used.
Because of this, for the same angle of incidence,
the angle of refraction is different for different
colours (except for normal incidence) and
therefore the colours present in the white light
get separated on passing through a transparent
medium. This is the reason for formation of a
spectrum and of a rainbow.
7.4 Huygens’ Theory:
7.4.1 Primary and Secondary Sources of
Light:

We see several sources of light around us,
e.g., the Sun, moon, stars, light bulb, etc. These
can be classified into primary and secondary
sources of light. Primary sources are sources
that emit light of their own, because of (i)
their high temperature (examples: the Sun,
the stars, objects heated to high temperatures,
flame of any kind, etc), (ii) the effect of current
being passed through them (examples: tube
light, TV, etc.), and (iii) chemical or nuclear

reactions (examples: firecrackers, nuclear
energy generators). Light originates in these
sources.

Secondary sources are those sources
which do not produce light of their own but
receive light from some other source and either
reflect or scatter it around. Examples include
the moon, the planets, objects like humans,
animals, plants, etc., which we see due to
reflected light. Majority of the sources that
we see in our daily life are secondary sources.
Most secondary sources are extended sources
as can be seen from the examples above.

7.4.2 Wavefront:

We have seen that when we drop a stone
in water, surface waves, commonly known as
ripples, are generated which travel outwards
from the point, say O, where the stone touches
water. Water particles along the path of the
wave move up and down, perpendicular to
the water surface. The phase of the wave at a
point is defined by the state of motion of the
particle at that point as well as the distance
of the point from the source (see Chapter 8 in
X1 Std book). Two particles are in phase, i.e.,
have the same phase if their state of motion is
the same, i.e., if they have the same velocity
and displacement perpendicular to the water
surface and if they are at the same distance
from the source. As the waves are travelling
symmetrically in all directions along the water
surface, all particles along the circumference
of a circle with centre at O will have the same
phase. The locus of all points having the same
phase at a given instant of time is called a
wavefront. Thus, a wavefront is the locus of all
points where waves starting simultaneously
from O reach at a given instant of time. In
case of water waves the wavefronts are circles
centred at O. The direction of propagation of
the wave is perpendicular to the wavefronts,
I.e., along the radii of the circle. The speed
with which the wavefronts move is the speed
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of the wave. Water waves are two dimensional
(along a surface) waves.

Three dimensional waves like the sound
waves produced by a source of sound, or light
waves produced by a light source, travel in all
directions away from the source and propagate
in three dimensions. Such a wave is called a
spherical wave. In these cases, the wavefronts
are surfaces passing through all points having
the same distance from the source and having
the same phase. Thus, in these cases, they
are spheres centred on the source say at O,
the cross sections of which are as shown in
Fig.7.1 (a). The spheres, the crosssections of
which are seen as circles in the figure are
wavefronts with the source at their centre.
The arrows are perpendicular to the spherical
surfaces and show the direction of propagation
of the waves. These arrows are the rays of
light that we have considered in earlier study
of optics. The wavefronts shown in the figure
correspond to a diverging beam of light. We
can similarly have wavefronts corresponding
to a converging beam of light. Such wavefronts

can be produced after passing through a lens.
'

Fig.7.1 (a): Spherical wavefronts corresponding
to diverging beam of light. These are spherical
waves. The source is at O.
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Fig.7.1(b): Plane wavefronts corresponding to
parallel beam of light. These are plane waves.

Let us now consider a spherical wavefront
which has travelled a large distance away
from the source. If we take a small portion this
wavefront, it will appear to be a plane surface
(just like the surface of the earth around us
appears to be flat to us) with the direction of
propagation perpendicular to it. In such a case
the wave is called a plane wave. Wavefronts
for a plane wave are shown in Fig.7.1 (b)
where the arrows (rays) which are now parallel
corresponding to a parallel beam of light, show
the direction of propagation of the wave. If the
source of light is linear (along a line) the wave
fronts will be cylindrical.

7.4.3 Huygens’ Principle:

Huygens had assumed light to be a wave,
similar to the mechanical wave like the water
wave or sound wave, propagating in ether.
Accordingly the particles of ether oscillate
due to the propagation of a light wave. He
put forth a principle which makes it possible
to determine the shape of a wavefront at any
time t, given its shape at an earlier time. This
principle can be stated as “Each point on a
wavefront acts as a secondary source of light
emitting secondary light waves called wavelets
in all directions which travel with the speed of
light in the medium. The new wavefront can
be obtained by taking the envelope of these
secondary wavelets travelling in the forward
direction and is thus, the envelope of the
secondary wavelets in forward direction. The
wavelets travelling in the backward direction
are ineffective”.

Given a wavefront at time t = 0 say, we
can determine the shape and position of a
wavefront at a later time t =T using Huygens’
principle. Let us first consider a plane
wavefront AB (corresponding to parallel
rays), at time t = O crosssection of which is
shown in Fig.7.2 (a). According to Huygens’
principle, each point on this wavefront will act
as a secondary source of light and will emit
spherical wavelets as shown in the figure. We
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have shown only the wavelets travelling in the
forward direction (direction of propagation
of light) as the backward travelling wavelets
are supposed to be ineffective. The wavelets
will be in the form of hemispheres and at a
later time t = T, the radius of the hemispheres
will be vT where v is the speed of light. The
wavefront at time T will be the envelope of
all these hemispherical wavelets and will be a
plane A’ B" as shown in the figure. Similarly,
the position of a spherical wavefront at time t
=0isshownas AB in Fig.7.2 (b). The wavelets
emitted in the forward direction by points on
AB will be hemispheres as shown in the figure.
Attime T the radius of these spheres will be vT
and their envelope will be a spherical surface
A’ B’ as shown. B

wavefront vr

att=0 —

secondary
wavelets

AN

A A
Fig.7.2 (a): Progress of a plane wavefront.
wavefront at time T’

wavefront
after time T

v
secondary
wavelets
I secondary
\ / source
I . 1
'§_>A source B B
vT

wavefront at time =0
Fig.7.2 (b): Progress of a spherical wavefront.
Huygens’ theory is an empirical theory.

There is no reason why the backward travelling
waves will not be effective. The theory was
accepted just because it explained various
optical phenomena as we will see next.
7.5 Reflection of Light at a Plane Surface
Let us consider a plane wavefront AB
perpendicular to the plane of the paper,
incident at an angle i with the normal to a

plane reflecting surface (mirror) MN which
is also perpendicular to the plane of the paper
as shown in Fig.7.3. The figure shows a
cross section of the setup. RA and QB show
the direction of incidence. Let us assume
that the incident wavefront AB touches the
reflecting surface at A at time t = 0. The
point B will touch the reflecting surface at C
after a time t = T. Between time t = 0 and T,
different points along the incident wavefront
reach the reflecting surface successively and
secondary wavelets will start propagating in
the form of hemispheres from those points in
succession. For reflection, the hemispheres
to be considered are on the same side of the
mirror. The wavelet emitted by point A will
have a radius vT at time T. The radius of the
wavelet emitted by C will be zero at that time.
The radii of the wavelets emitted by points
between A and C will gradually decrease
from vT to 0. The envelope of these wavelets
forms the reflected wavefront. This is shown
by EC which is the common tangent to the
reflected wavelet originating from A and other
secondary wavelets emitted by points between
Aand C.

incident
wavefront

F

reflected
wavefront

N
Fig.7.3: Reflection at a plane surface.
Obviously, AE = BC = VT, the distance

travelled by light in the same medium in same

time. The arrow AE shows the direction
of propagation of the reflected wave. The
normal to MN at A is shown by AP, the angle
of incidence ZRAP = i. As RA and AP are
perpendicular to AB and AC respectively,

Z/BAC is also equal to i. The triangles ABC

and AEC are right angled triangles and have

common hypotenuse (AC) and one equal
side (AE = BC). Hence, the two triangles are
congruent and we have,
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ZACE = Z/BAC =I. ---(7.1)
The angle of reflection is Z/PAE =r. As AE is
perpendicular to CE and AP is perpendicular
to AC,

ZACE =/PAE =r. ---(7.2)
Egs. (7.1) and (7.2) give us i =r which is the
law of reflection.

It is also clear from the figure that the
incident ray, normal and the reflected ray are
in the same plane which is the plane of the
paper. This is the other law of reflection.

Let us assume the rays, RA and QC to
be coming from the extremities of the object,
i.e., AB is the size of the object. The distance
between the corresponding reflected rays AE
and CF will be same as AB as can be seen from
the congruent triangles, ABC and AEC. Thus,
the size of the object in the reflected image will
be same as the actual size of the object.

Let us assume A and B to be the right and
left sides of the object respectively as it looks
into the mirror. After reflection, the right side,
at Ais seen at E and the left side at B is seen
at C. As the right side has now become left
side and vice-versa as the image comes out
of the mirror. This is called lateral inversion.
Below we will see that lateral inversion does
not occur during refraction at a plane surface.

incindent B
wavefront

N
P'E refracted
E wavefront

Fig.7.4: Refraction of light.

7.6. Refraction of Light at a Plane Boundary
Between Two Media :

Consider a wavefront AB, incident on a
plane boundary MN, separating two uniform
and optically transparent media as shown in
Fig 7.4. At time t = 0, A has just reached the
boundary surface, while B reaches the surface

at C at a later time t = T. Let the speed of
light be v, in medium 1 and v, in medium 2.
Thus, BC = v, T. Attime t =T, the radius (AE)
of the secondary wavelet emitted from A will
be v,T. The refracted wavefront will be the
envelope of wavelets successively emitted by
all the points between A and C between time
t=0andt=T. CE isthe tangent to the secondary
wavelet emitted from A. It is also the common
tangent to all the secondary wavelets emitted
by points between A and C. The normal to the
boundary at A is shown by PP".

ZA'AP = /BAC = the angle of incidence =i
/P'AE = ZACE = angle of refraction =r
From AABC,

sini=v, T/AC ---(7.3)
From AAEC,
sinr=v,T/AC --- (7.4)

From Egs. (7.3) and (7.4) we get
sini/sinr=v, /v,=(clv,)/ (c/v)=n/n,
n,sini =n, sinr, --- (7.5)

Here, n, and n, are the absolute refractive
indices of media 1 and 2 respectively. Eq. (7.5)
is the law of refraction and is also called the
Snell’s law. Also, it is clear from the figure
that the incident and refracted rays and the
normal to the boundary surface are in the same
plane. If v, > v, , i.e.,, n.<n,. Theni>r. Thus,
during oblique incidence, the refracted ray will
bend towards the normal while going from an
optically rarer (smaller refractive index) to
an optically denser (higher refractive index)
medium. While entering an optically rarer
medium form a denser medium, the refracted
ray will bend away from the normal.

The refracted image will not be inverted
as can be seen from the diagram. Also, except
for normal incidence, the image seems to be
bent (broken) below the boundary surface as
the rays change their direction on crossing
the surface. At normal incidence, the rays
travel along the same direction and there is no
breaking of the image.
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Dependence of Wavelength on the Refractive
Index of the Medium:

Consider monochromatic light incident
normally on a boundary between a rarer
medium and a denser medium as shown in
Fig. 7.5 (a). The boundary between the two
surfaces is shown by PQ. The three successive
wavefronts AB, CD and EF are separated
by a distance A, which is the wavelength of
light in the first medium. After refraction, the
three wavefronts are indicated by A'B’, C'D’
and E'F'. Assuming the second medium to be
denser, the speed of light will be smaller in that
medium and hence, the wavefronts will move
slower and will be able to cover less distance
than that covered in the same time in the first
medium. They will therefore be more closely
spaced than in the first medium. The distance
between any two wavefronts is 4,, equal to
the wavelength of light in the second medium.
Thus, A, will be smaller than the wavelength
in the first medium. We can easily find the
relation between A and A, as follows.

A 4 A\ 4 A 4

E F
C D
A B
P
E F Q
C D'
BI

Fig.7.5 (a): Change in wavelength of light
while going from one medium to another for
normal incidence.

Fig.7.5 (b): For
obligue incidence.

Let the wavefront AB reach the boundary
surface PQ at time t = 0 and the next wavefront

CD which is at a distance of A, from AB, reach
PQ attime t=T. As the speed of the wave is v,
in medium 1 and T is the time period in which
the distance A is covered by the wavefront , we
can write
T=AM, --- (7.6)
In medium 2, the distance travelled by the
wavefront in time T will be 4,. The relation
between these two quantities will be given by
T=21v, --(7.7)
Eq. (7.6) and Eq. (7.7) show that the
velocity in a medium is proportional to the
wavelength in that medium and give
A, = AV, =2A.nIn, --- (7.8)
If medium 1 is vacuum where the
wavelength of light is A4,and n is the refractive
index of medium 2, then the wavelength of
light in medium 2, 1 can be written as
A= Avjc = A/n - (7.9)
The ratio of the frequencies v, and v,
of the wave in the two media can be written,
using Eq. (7.8) as,
v /v, =/ A,/ A)=1 --(7.10)
This demonstrates that the frequency of
a wave remains unchanged while going from
one medium to another. Similar analysis goes
through if the wave is incident at an angle as
shown in Fig.7.5 (b).

) Remember this> ~

The frequency of a wave is its fundamental

property and does not change while going

from one medium to another. The speed and

the wavelength of a wave do change and

are inversely proportional to the relative

refractive index of the second medium with
_respect to the first.

7.7 Polarization:

We know that light is an electromagnetic
wave and that its electric (E) and magnetic (B)
field vectors are perpendicular to each other
and to the direction of propagation. We also
know that light is emitted by atoms. Thus,
when one atom emits a wave along the x-axis
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say, its electric field may be along the y-axis
and magnetic field will be along the z-axis.
However, if another atom in the source emits
a wave travelling along the x-axis, it is not
necessary that the electric field be along the
y-axis. It can be along any direction in the y-z
plane and the magnetic field will be along a
direction perpendicular to it. Thus, in general,
the electric fields of waves emitted along the
x-axis by a light source like the Sun, stars or
a light bulb will be in all possible directions in
the y-z plane and the corresponding magnetic
fields will be perpendicular to their electric
fields. Such light is called unpolarized light
and is represented by double headed arrows
(showing the directions of electric field) in
a plane perpendicular to the direction of
propagation. This is shown in Fig.7.6 (a) for a
light beam travelling perpendicular to the plane
of the paper. On the other hand, if somehow
light is constrained so that its electric field
is restricted along one particular direction,
then it is called plane polarized light. This is
shown in Fig.7.6 (b) for a light beam travelling
perpendicular to the plane of the paper.

How can we get polarized light? There
are certain types of materials which allow only

h

&)

N
E

Fig. 7.6 (a): Unpolarized light coming towards
us or going away from us.

f<—o—>?
Fig. 7.6 (b): Polarized light coming towards us

or going away from us with electric field along
the horizontal direction.

those light waves which have their electric
field along a particular direction to pass
through and block all other waves which have
their electric field in other directions. These
materials are called polarizers. A polaroid
is a kind of synthetic plastic sheet which is

used as polarizer. The particular direction
along which the electric field of the emergent
wave is oriented is called the polarizing axis
of the polarizer. This is shown in Fig.7.7 (a).
Thus, when unpolarized light passes through a
polarizer, the emergent light is plane polarized.
The plane ABCD containing the electric field
vector of plane polarized light is called the
plane of vibration while the plane perpendicular
to the plane of the vibration (horizontal plane)
is called plane of polarization.

If the polarized light is made to pass
through another polarizer with its polarizing
axis perpendicular to the polarizing axis of
the first polarizer, no light can emerge on
the other side as the second polarizer would
allow only waves having electric field parallel
to its polarizing axis to pass through. On the
other hand, if the polarizing axis of the second
polarizer makes an angle smaller than 90°with
that of the first polarizer, then the component
of the electric field of the polarized light along
the direction of the polarizing axis of the second
polarizer can pass through. The intensity of
light will reduce after passing through each
polarizer. We will mathematically calculate
this below. We have used the electric field
to explain the phenomenon of polarization,
however, it could also be explained in the
same manner using the magnetic field.

Polarized

Polarizing light

axis

Polaroid

Fig.7.7(a): Polarization of light.

Light Source
Consider an unpolarized wave having

angular frequency ® and wave vector
k (=2n/2), travelling along the x-direction.
The magnitude of its electric field is given by
E =E, sin(kx —wt), E, being the amplitude of
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the wave (see Chapter 13 of the XI" Std book).
The intensity of the wave will be proportional
to |E,°. The direction of the electric field
can be anywhere in the y-z plane we will
consider the passage of this wave through
two polarizers as shown in Fig. 7.7 (b). Let us
consider a particular wave having its electric
field at an angle ¢ to the axis of the first
polarizer. The component E  cos¢ will pass
through the first polarizer while the normal
component E; sing will be obstructed. The
intensity of this particular wave after passing
through the polarizer will be proportional to
the square of its amplitude, i.e., to [E, cos¢ |~
For unpolarized incident wave, ¢ can have all
values from 0 to 180°. Thus, to get the intensity
of the plane polarized wave emerging from the
first polarizer, we have to average |E, cos¢ |?
over all values of ¢ between 0 and 180°. The
value of the average of cos?¢ is . Hence,
the intensity of the wave will be proportional

axis of polarization . .
: axis of polarization

1)

1

/

1>

incident
unpolarized :
light first polarizer

Fig.7.7(b): Unpolarized light passing through
two polarizers.

" second polarizer

to l\EO ’,i.e., the intensity of an unpolarized
wave reduces by half after passing through a
polarizer.

Let us now consider the linearly polarized
wave emerging from first polarizer. Let us
assume that the polarized wave has its electric
field (E ,) along the y-direction as shown in
the figure. We can write the electric field as

E, = jE, sin(kx - ot), --- (7.11)
where, E,  is the amplitude of this polarized
wave. The intensity of the polarized wave is
given by

I, |E

—(7.12)

1ol

Now if this wave passes through second
polarizer whose polarization axis makes
an angle @ with the y-direction, only the
component E, cosg will pass through. Thus,
the amplitude of the wave which passes
through (say E,)) is now E, cosg and its
intensity I, will be

I, oc [E, |
Lo |E,| cos?0,0r I, = [,cos’d. --- (7.13)

This is known as Malus’ law after E. L.
Malus (1775-1812) who discovered the law
experimentally. Malus’ law gives the intensity
of a linearly polarized wave after it passes
through a polarizer.

Note that @ is the angle between the axes
of polarization of the two polarizers. If 6 is
equal to zero, i.e., the polarization axes of the
two polarizers are parallel, the intensity does
not change while passing through the second
polarizer. If 6 is 90°, cos*@ is 0 and no light
emerges from the second polarizer. 0 =0° and
90° are known as parallel and cross settings of
the two polarizers.

r‘C) Remember this> ~

Only transverse waves can be polarized
while longitudinal waves cannot be
polarized. In transverse waves, the
oscillations can be along any direction
in a plane which is perpendicular to the
direction of propagation of the wave. By
restricting the oscillations to be along only
one direction in this plane, we get a plane
polarized wave. For longitudinal waves,
e.g., the sound wave, the particles of the
medium oscillate only along one direction,
which is the direction of propagation of the
| wave, so there is nothing to restrict.

J

[ Example 7.1: Unpolarized light of intensity )
l,. is made to pass through three polarizers
P,, P, and P,successively. The polarization
axis of P, makes an angle of 6, with that of
P,, while that of P, makes an angle 6, with
 that of the P,. What will be the intensity of |
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light coming out of P,?

Solution: The first polarizer, P, will polarize
the incident unpolarized light. The intensity
after passing through this polarizer will be
I, =1,/2 as discussed above. Let us assume
that the amplitude of the electric field after
passing through P, is E . While passing
through P,, a component of the electric field,
E,, = E,ycosg, will be able to pass through.
Thus, the intensity of light coming out of P,
will be 1= (1, cos?g, ) = (1, cos’6,) /2.
While passing through P, a component
E,, = E,,cos6, will pass through. Thus, the
intensity of light coming out of P, will be
|,=(1,cos 6, cos”6,) /2

. J
7.7.1 Polarization by Reflection: Brewster’s

Law:

When light is incident at an angle on a
boundary between two transparent media
having refractive indices n, and n,, part of
it gets refracted and the rest gets reflected.
Let us consider unpolarized light incident
from medium of refractive index n, on such
a boundary perpendicular to the plane of the

paper, as shown in Fig.7.8.
unpolarized
incident ray

polarized
: reflected ray

On

partially polarized
refracted ray

Fig. 7.8: Polarization by reflection.
The incident wave is unpolarized. Its

electric field which isin the plane perpendicular
to the direction of incidence, is resolved into
two components, one parallel to the plane of
the paper, shown by double arrows and the
other perpendicular to the plane of the paper
shown by dots. Both have equal magnitude. In
general, the reflected and refracted rays do not
have equal magnitudes of the two components

and hence are partially polarized. It was
experimentally discovered by D. Brewster in
1812 that for a particular angle of incidence
0, (shown in the figure), the reflected wave
is completely plane polarized with its electric
field perpendicular to the plane of the paper
while the refracted wave is partially polarized.
This particular angle of incidence is called
the Brewster’s angle. For this angle of
incidence, the refracted and reflected rays are
perpendicular to each other. From the figure,
for angle of refraction 9 we have,
0, +0 =90°

From law of refraction we have,

n, sin@; = n, sin6_. This with Eq.(7.14) gives
n,sin6, =n,sin(90-6,), giving

- (7.14)

n
-2 = '[CII’IQB l or
ny

0, =tan™ (&)
n,

This is known as Brewster’s law.
The phenomena of polarization by reflection is
used to cut out glare from the reflecting surfaces
using special sunglasses. Sunglasses are fitted
with polaroids which reduce the intensity of
the partially or fully polarized reflected light
coming to the eyes from reflecting surfaces.
As seen above, the intensity of Sunlight or
light coming from artificial sources which
iIs completely unpolarized is also reduced
to half by the polaroid. This phenomenon
of polarization by reflection works only for
nonmetallic surfaces.

,—C) Use your brain power>ﬁ

What will you observe if

1. you look at an unpolarized source of
light through a polarizer?

2. you look at the source through two
polarizers and rotate one of them around
the path of light for one full rotation?

3. instead of rotating only one of the
polaroid, you rotate both polaroids
simultaneously in the same direction? |

- (7.15)
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Example 7.2: For what angle of incidence
will light incident on a bucket filled with
liqguid having refractive index 1.5 be
completely polarized after reflection?

Solution: The reflected light will be
completely polarized when the angle of
incidence is equal to the Brewster’s angle

which is given by @ =tan™' "2 , where

nl
n, and n,are refractive indices of the first

and the second medium respectively. In this
case, n, =1and N,=1.5.

Thus, the required angle of incidence =

Brewster’s angle = tan™ % = 56.31°

. J
7.7.2 Polarization by Scattering:

When Sunlight strikes air molecules or
dust particles in the atmosphere, it changes
its direction. This is called scattering. We see
the sky as blue because of this scattering as
blue light is preferentially scattered. If there
were no scattering, the sky would appear
dark to us as long as we do not directly
look at the Sun and we could see stars even
during the day. When Sunlight is scattered,
it gets partially polarized in a way similar to
the reflected light seen above (Fig. 7.8). The
degree of polarization depends on the angle of
scattering, i.e., the angle between the direction
of the light incident on the molecule or dust
particle and the direction of the scattered light.
If this angle is 90°, the scattered light is plane
polarized. Thus, the scattered light reaching us
from different directions in the sky is polarized
to different degrees.

) Can you tell? 2

1. If you look at the sky in a particular
direction through a polaroid and rotate
the polaroid around that direction what
will you see?

2. Why does the sky appear to be blue
while the clouds appear white?

7.8 Interference:

We have learnt about the superposition
of waves in Chapter 6. According to this
principle, when two or more waves overlap,
the resultant displacement of a particle of
the medium, at a given point is the sum of
the displacements of the particle produced by
individual waves, as if each wave is the only
one which is present. Because of this, particles
in the medium present where the crests (or
troughs) of the two waves coincide will have
larger displacements, while particles present
where the crest of one wave coincides with the
trough of the other, the displacement will be
minimum. If the amplitudes of the two waves
are equal, then for the first set of particles, the
displacement will be twice the amplitude of
the individual wave, and for the second set of
particles, the displacement will be zero. Thus,
the intensity of the wave which is proportional
to the square of the amplitude of the wave, will
be nonuniform, being larger at some places and
smaller at others. This is called interference.

Interference is shown in Fig.7.9 for
water waves. S, and S, are sources of water
waves of the same wavelength and amplitude,
and are in phase with each other, i.e., at any
given instant of time, the phases of the waves
emitted by both sources are equal. The crests
are shown by continuous circles while the
troughs are shown by dashed circles. Points
where the crest of one wave coincides with the
crest of another wave and where the trough
of one wave coincides with the trough of
another wave are shown by blue dots. At these
points the displacement is maximum and is
twice that for each wave. These are points of
constructive interference. The points where the
crest of one wave is coincident with the trough
of another are shown by red dots. At these
points, the displacement is zero. These are
points of destructive interference. Thus, along
some straight lines radially diverging from the
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midpoint of S,S,, there is constructive (along
the radial lines connecting the blue dots) and
destructive (along the radial lines connecting
the red dots) interference. Interference had
been observed in the case of water waves and
sound waves. It was observed for light waves
in the laboratory for the first time by Thomas
Young (1773-1829) in the year 1801. As noted
above, this was the first proof of the wave

nature of light. We will discuss this below.

Constructive
interference
N

Destructive
,/ interference

.
.
.,

R

X econstructive
interference

®destructive
interference

Fig.7.9: Interference for water waves.
7.8.1 Coherent Sources of Light:

Two sources which emit waves of the
same frequency having a constant phase
difference, independent of time, are called
coherent sources. At any given point in
space, at every instant of time, there are light
waves from multiple sources overlapping one
another. These must be interfering and we
should be able to see interference all around
us at all time. However, we see no interference
pattern. This is because different sources emit
waves of different frequencies and even if
they emit waves of the same frequency, they
are not in phase. Thus, the interference pattern
changes every instant of time and no pattern is
sustained over a significant length of time for
us to see.

For interference to be seen over sustained
periods,we need two sources of light which
emit waves of the same frequen